Optimal portfolios: stochastic models for optimal investment and risk management in continuous time
The focus of the book is the construction of optimal investment strategies in a security market model where the prices follow diffusion processes. It begins by presenting the complete Black-Scholes type model and then moves on to incomplete models and models including constraints and transaction cos...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; New Jersey ; London ; Hong Kong
World Scientific
[1997]
|
Schlagworte: | |
Online-Zugang: | FHN01 TUM02 TUM01 URL des Erstveröffentlichers |
Zusammenfassung: | The focus of the book is the construction of optimal investment strategies in a security market model where the prices follow diffusion processes. It begins by presenting the complete Black-Scholes type model and then moves on to incomplete models and models including constraints and transaction costs. The models and methods presented will include the stochastic control method of Merton, the martingale method of Cox-Huang and Karatzas et al., the log optimal method of Cover and Jamshidian, the value-preserving model of Hellwig etc. Stress is laid on rigorous mathematical presentation and clear economic interpretations while technicalities are kept to the minimum. The underlying mathematical concepts will be provided. No a priori knowledge of stochastic calculus, stochastic control or partial differential equations is necessary (however some knowledge in stochastics and calculus is needed) |
Beschreibung: | xi, 338 Seiten Illustrationen |
ISBN: | 9789812385345 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044633880 | ||
003 | DE-604 | ||
005 | 20220111 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1997 |||| o||u| ||||||eng d | ||
020 | |a 9789812385345 |c Online |9 978-981-238-534-5 | ||
024 | 7 | |a 10.1142/3548 |2 doi | |
035 | |a (ZDB-124-WOP)00004975 | ||
035 | |a (OCoLC)1012717844 | ||
035 | |a (DE-599)BVBBV044633880 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-91G |a DE-91 | ||
082 | 0 | |a 332.6/01/5118 |2 22 | |
084 | |a QK 800 |0 (DE-625)141681: |2 rvk | ||
084 | |a QK 810 |0 (DE-625)141682: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
084 | |a WIR 160f |2 stub | ||
100 | 1 | |a Korn, Ralf |d 1963- |e Verfasser |0 (DE-588)171321642 |4 aut | |
245 | 1 | 0 | |a Optimal portfolios |b stochastic models for optimal investment and risk management in continuous time |c Ralf Korn, Johannes Gutenberg-Universität Mainz |
264 | 1 | |a Singapore ; New Jersey ; London ; Hong Kong |b World Scientific |c [1997] | |
300 | |a xi, 338 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The focus of the book is the construction of optimal investment strategies in a security market model where the prices follow diffusion processes. It begins by presenting the complete Black-Scholes type model and then moves on to incomplete models and models including constraints and transaction costs. The models and methods presented will include the stochastic control method of Merton, the martingale method of Cox-Huang and Karatzas et al., the log optimal method of Cover and Jamshidian, the value-preserving model of Hellwig etc. Stress is laid on rigorous mathematical presentation and clear economic interpretations while technicalities are kept to the minimum. The underlying mathematical concepts will be provided. No a priori knowledge of stochastic calculus, stochastic control or partial differential equations is necessary (however some knowledge in stochastics and calculus is needed) | ||
650 | 4 | |a Portfolio management / Mathematical models | |
650 | 4 | |a Options (Finance) / Mathematical models | |
650 | 4 | |a Risk management / Mathematical models | |
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kapitalanlage |0 (DE-588)4073213-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Portfolio Selection |0 (DE-588)4046834-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Portfoliomanagement |0 (DE-588)4115601-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kapitalanlage |0 (DE-588)4073213-7 |D s |
689 | 0 | 1 | |a Portfoliomanagement |0 (DE-588)4115601-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kapitalanlage |0 (DE-588)4073213-7 |D s |
689 | 1 | 1 | |a Portfolio Selection |0 (DE-588)4046834-3 |D s |
689 | 1 | 2 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810232153 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810232152 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3548#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030031852 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3548#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3548#t=toc |l TUM02 |p ZDB-124-WOP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/3548 |l TUM01 |p ZDB-124-WOP |q TUM_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178044889333760 |
---|---|
any_adam_object | |
author | Korn, Ralf 1963- |
author_GND | (DE-588)171321642 |
author_facet | Korn, Ralf 1963- |
author_role | aut |
author_sort | Korn, Ralf 1963- |
author_variant | r k rk |
building | Verbundindex |
bvnumber | BV044633880 |
classification_rvk | QK 800 QK 810 SK 980 |
classification_tum | WIR 160f |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004975 (OCoLC)1012717844 (DE-599)BVBBV044633880 |
dewey-full | 332.6/01/5118 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.6/01/5118 |
dewey-search | 332.6/01/5118 |
dewey-sort | 3332.6 11 45118 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03632nmm a2200625zc 4500</leader><controlfield tag="001">BV044633880</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220111 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812385345</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-238-534-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3548</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012717844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044633880</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.6/01/5118</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QK 800</subfield><subfield code="0">(DE-625)141681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QK 810</subfield><subfield code="0">(DE-625)141682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 160f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Korn, Ralf</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)171321642</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal portfolios</subfield><subfield code="b">stochastic models for optimal investment and risk management in continuous time</subfield><subfield code="c">Ralf Korn, Johannes Gutenberg-Universität Mainz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore ; New Jersey ; London ; Hong Kong</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[1997]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 338 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The focus of the book is the construction of optimal investment strategies in a security market model where the prices follow diffusion processes. It begins by presenting the complete Black-Scholes type model and then moves on to incomplete models and models including constraints and transaction costs. The models and methods presented will include the stochastic control method of Merton, the martingale method of Cox-Huang and Karatzas et al., the log optimal method of Cover and Jamshidian, the value-preserving model of Hellwig etc. Stress is laid on rigorous mathematical presentation and clear economic interpretations while technicalities are kept to the minimum. The underlying mathematical concepts will be provided. No a priori knowledge of stochastic calculus, stochastic control or partial differential equations is necessary (however some knowledge in stochastics and calculus is needed)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Portfolio management / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Options (Finance) / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk management / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kapitalanlage</subfield><subfield code="0">(DE-588)4073213-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Portfolio Selection</subfield><subfield code="0">(DE-588)4046834-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Portfoliomanagement</subfield><subfield code="0">(DE-588)4115601-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kapitalanlage</subfield><subfield code="0">(DE-588)4073213-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Portfoliomanagement</subfield><subfield code="0">(DE-588)4115601-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kapitalanlage</subfield><subfield code="0">(DE-588)4073213-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Portfolio Selection</subfield><subfield code="0">(DE-588)4046834-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810232153</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810232152</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3548#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030031852</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3548#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3548#t=toc</subfield><subfield code="l">TUM02</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/3548</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044633880 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:43Z |
institution | BVB |
isbn | 9789812385345 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030031852 |
oclc_num | 1012717844 |
open_access_boolean | |
owner | DE-92 DE-91G DE-BY-TUM DE-91 DE-BY-TUM |
owner_facet | DE-92 DE-91G DE-BY-TUM DE-91 DE-BY-TUM |
physical | xi, 338 Seiten Illustrationen |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP ZDB-124-WOP TUM_Einzelkauf |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | World Scientific |
record_format | marc |
spelling | Korn, Ralf 1963- Verfasser (DE-588)171321642 aut Optimal portfolios stochastic models for optimal investment and risk management in continuous time Ralf Korn, Johannes Gutenberg-Universität Mainz Singapore ; New Jersey ; London ; Hong Kong World Scientific [1997] xi, 338 Seiten Illustrationen txt rdacontent c rdamedia cr rdacarrier The focus of the book is the construction of optimal investment strategies in a security market model where the prices follow diffusion processes. It begins by presenting the complete Black-Scholes type model and then moves on to incomplete models and models including constraints and transaction costs. The models and methods presented will include the stochastic control method of Merton, the martingale method of Cox-Huang and Karatzas et al., the log optimal method of Cover and Jamshidian, the value-preserving model of Hellwig etc. Stress is laid on rigorous mathematical presentation and clear economic interpretations while technicalities are kept to the minimum. The underlying mathematical concepts will be provided. No a priori knowledge of stochastic calculus, stochastic control or partial differential equations is necessary (however some knowledge in stochastics and calculus is needed) Portfolio management / Mathematical models Options (Finance) / Mathematical models Risk management / Mathematical models Stochastic processes Stochastisches Modell (DE-588)4057633-4 gnd rswk-swf Kapitalanlage (DE-588)4073213-7 gnd rswk-swf Portfolio Selection (DE-588)4046834-3 gnd rswk-swf Portfoliomanagement (DE-588)4115601-8 gnd rswk-swf Kapitalanlage (DE-588)4073213-7 s Portfoliomanagement (DE-588)4115601-8 s DE-604 Portfolio Selection (DE-588)4046834-3 s Stochastisches Modell (DE-588)4057633-4 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789810232153 Erscheint auch als Druck-Ausgabe 9810232152 http://www.worldscientific.com/worldscibooks/10.1142/3548#t=toc Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Korn, Ralf 1963- Optimal portfolios stochastic models for optimal investment and risk management in continuous time Portfolio management / Mathematical models Options (Finance) / Mathematical models Risk management / Mathematical models Stochastic processes Stochastisches Modell (DE-588)4057633-4 gnd Kapitalanlage (DE-588)4073213-7 gnd Portfolio Selection (DE-588)4046834-3 gnd Portfoliomanagement (DE-588)4115601-8 gnd |
subject_GND | (DE-588)4057633-4 (DE-588)4073213-7 (DE-588)4046834-3 (DE-588)4115601-8 |
title | Optimal portfolios stochastic models for optimal investment and risk management in continuous time |
title_auth | Optimal portfolios stochastic models for optimal investment and risk management in continuous time |
title_exact_search | Optimal portfolios stochastic models for optimal investment and risk management in continuous time |
title_full | Optimal portfolios stochastic models for optimal investment and risk management in continuous time Ralf Korn, Johannes Gutenberg-Universität Mainz |
title_fullStr | Optimal portfolios stochastic models for optimal investment and risk management in continuous time Ralf Korn, Johannes Gutenberg-Universität Mainz |
title_full_unstemmed | Optimal portfolios stochastic models for optimal investment and risk management in continuous time Ralf Korn, Johannes Gutenberg-Universität Mainz |
title_short | Optimal portfolios |
title_sort | optimal portfolios stochastic models for optimal investment and risk management in continuous time |
title_sub | stochastic models for optimal investment and risk management in continuous time |
topic | Portfolio management / Mathematical models Options (Finance) / Mathematical models Risk management / Mathematical models Stochastic processes Stochastisches Modell (DE-588)4057633-4 gnd Kapitalanlage (DE-588)4073213-7 gnd Portfolio Selection (DE-588)4046834-3 gnd Portfoliomanagement (DE-588)4115601-8 gnd |
topic_facet | Portfolio management / Mathematical models Options (Finance) / Mathematical models Risk management / Mathematical models Stochastic processes Stochastisches Modell Kapitalanlage Portfolio Selection Portfoliomanagement |
url | http://www.worldscientific.com/worldscibooks/10.1142/3548#t=toc |
work_keys_str_mv | AT kornralf optimalportfoliosstochasticmodelsforoptimalinvestmentandriskmanagementincontinuoustime |