Least action principle of crystal formation of dense packing type and Kepler's conjecture:
The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal "known density" of B/[symbol]18. In 1611, Johannes Kepler had already "conjectured" that B/[symbol]18...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2001
|
Schriftenreihe: | Nankai tracts in mathematics
v. 3 |
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal "known density" of B/[symbol]18. In 1611, Johannes Kepler had already "conjectured" that B/[symbol]18 should be the optimal "density" of sphere packings. Thus, the central problems in the study of sphere packings are the proof of Kepler's conjecture that B/[symbol]18 is the optimal density, and the establishing of the least action principle that the hexagonal dense packings in crystals are the geometric consequence of optimization of density. This important book provides a self-contained proof of both, using vector algebra and spherical geometry as the main techniques and in the tradition of classical geometry |
Beschreibung: | xxi, 402 p. ill |
ISBN: | 9789812384911 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044633862 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789812384911 |c electronic bk. |9 978-981-238-491-1 | ||
024 | 7 | |a 10.1142/4741 |2 doi | |
035 | |a (ZDB-124-WOP)00004123 | ||
035 | |a (OCoLC)1012623815 | ||
035 | |a (DE-599)BVBBV044633862 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 511.6 |2 22 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Hsiang, Wu Yi |d 1937- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Least action principle of crystal formation of dense packing type and Kepler's conjecture |c Wu-Yi Hsiang |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2001 | |
300 | |a xxi, 402 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Nankai tracts in mathematics |v v. 3 | |
520 | |a The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal "known density" of B/[symbol]18. In 1611, Johannes Kepler had already "conjectured" that B/[symbol]18 should be the optimal "density" of sphere packings. Thus, the central problems in the study of sphere packings are the proof of Kepler's conjecture that B/[symbol]18 is the optimal density, and the establishing of the least action principle that the hexagonal dense packings in crystals are the geometric consequence of optimization of density. This important book provides a self-contained proof of both, using vector algebra and spherical geometry as the main techniques and in the tradition of classical geometry | ||
650 | 4 | |a Kepler's conjecture | |
650 | 4 | |a Sphere packings | |
650 | 4 | |a Crystallography, Mathematical | |
650 | 0 | 7 | |a Kristallmathematik |0 (DE-588)4125615-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kugelpackung |0 (DE-588)4165929-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kugelpackung |0 (DE-588)4165929-6 |D s |
689 | 0 | 1 | |a Kristallmathematik |0 (DE-588)4125615-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810246709 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810246706 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4741#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030031834 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4741#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178044847390720 |
---|---|
any_adam_object | |
author | Hsiang, Wu Yi 1937- |
author_facet | Hsiang, Wu Yi 1937- |
author_role | aut |
author_sort | Hsiang, Wu Yi 1937- |
author_variant | w y h wy wyh |
building | Verbundindex |
bvnumber | BV044633862 |
classification_rvk | SK 380 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004123 (OCoLC)1012623815 (DE-599)BVBBV044633862 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02691nmm a2200493zcb4500</leader><controlfield tag="001">BV044633862</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812384911</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-238-491-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4741</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012623815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044633862</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsiang, Wu Yi</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Least action principle of crystal formation of dense packing type and Kepler's conjecture</subfield><subfield code="c">Wu-Yi Hsiang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 402 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Nankai tracts in mathematics</subfield><subfield code="v">v. 3</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal "known density" of B/[symbol]18. In 1611, Johannes Kepler had already "conjectured" that B/[symbol]18 should be the optimal "density" of sphere packings. Thus, the central problems in the study of sphere packings are the proof of Kepler's conjecture that B/[symbol]18 is the optimal density, and the establishing of the least action principle that the hexagonal dense packings in crystals are the geometric consequence of optimization of density. This important book provides a self-contained proof of both, using vector algebra and spherical geometry as the main techniques and in the tradition of classical geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kepler's conjecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sphere packings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallography, Mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kristallmathematik</subfield><subfield code="0">(DE-588)4125615-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kugelpackung</subfield><subfield code="0">(DE-588)4165929-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kugelpackung</subfield><subfield code="0">(DE-588)4165929-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kristallmathematik</subfield><subfield code="0">(DE-588)4125615-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810246709</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810246706</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4741#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030031834</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4741#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044633862 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:43Z |
institution | BVB |
isbn | 9789812384911 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030031834 |
oclc_num | 1012623815 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xxi, 402 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Nankai tracts in mathematics |
spelling | Hsiang, Wu Yi 1937- Verfasser aut Least action principle of crystal formation of dense packing type and Kepler's conjecture Wu-Yi Hsiang Singapore World Scientific Pub. Co. c2001 xxi, 402 p. ill txt rdacontent c rdamedia cr rdacarrier Nankai tracts in mathematics v. 3 The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal "known density" of B/[symbol]18. In 1611, Johannes Kepler had already "conjectured" that B/[symbol]18 should be the optimal "density" of sphere packings. Thus, the central problems in the study of sphere packings are the proof of Kepler's conjecture that B/[symbol]18 is the optimal density, and the establishing of the least action principle that the hexagonal dense packings in crystals are the geometric consequence of optimization of density. This important book provides a self-contained proof of both, using vector algebra and spherical geometry as the main techniques and in the tradition of classical geometry Kepler's conjecture Sphere packings Crystallography, Mathematical Kristallmathematik (DE-588)4125615-3 gnd rswk-swf Kugelpackung (DE-588)4165929-6 gnd rswk-swf Kugelpackung (DE-588)4165929-6 s Kristallmathematik (DE-588)4125615-3 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789810246709 Erscheint auch als Druck-Ausgabe 9810246706 http://www.worldscientific.com/worldscibooks/10.1142/4741#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hsiang, Wu Yi 1937- Least action principle of crystal formation of dense packing type and Kepler's conjecture Kepler's conjecture Sphere packings Crystallography, Mathematical Kristallmathematik (DE-588)4125615-3 gnd Kugelpackung (DE-588)4165929-6 gnd |
subject_GND | (DE-588)4125615-3 (DE-588)4165929-6 |
title | Least action principle of crystal formation of dense packing type and Kepler's conjecture |
title_auth | Least action principle of crystal formation of dense packing type and Kepler's conjecture |
title_exact_search | Least action principle of crystal formation of dense packing type and Kepler's conjecture |
title_full | Least action principle of crystal formation of dense packing type and Kepler's conjecture Wu-Yi Hsiang |
title_fullStr | Least action principle of crystal formation of dense packing type and Kepler's conjecture Wu-Yi Hsiang |
title_full_unstemmed | Least action principle of crystal formation of dense packing type and Kepler's conjecture Wu-Yi Hsiang |
title_short | Least action principle of crystal formation of dense packing type and Kepler's conjecture |
title_sort | least action principle of crystal formation of dense packing type and kepler s conjecture |
topic | Kepler's conjecture Sphere packings Crystallography, Mathematical Kristallmathematik (DE-588)4125615-3 gnd Kugelpackung (DE-588)4165929-6 gnd |
topic_facet | Kepler's conjecture Sphere packings Crystallography, Mathematical Kristallmathematik Kugelpackung |
url | http://www.worldscientific.com/worldscibooks/10.1142/4741#t=toc |
work_keys_str_mv | AT hsiangwuyi leastactionprincipleofcrystalformationofdensepackingtypeandkeplersconjecture |