Lectures on Lie groups:
This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance b...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2002
|
Schriftenreihe: | Series on university mathematics
vol. 2 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints. For example, the orbital geometry of adjoint action, is regarded as the geometric organization of the totality of non-commutativity of a given compact connected Lie group, while the maximal tori theorem of É. Cartan and the Weyl reduction of the adjoint action on G to the Weyl group action on a chosen maximal torus are presented as the key results that provide a clear-cut understanding of the orbital geometry |
Beschreibung: | v, 108 p. ill |
ISBN: | 9789812384782 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044633854 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789812384782 |c electronic bk. |9 978-981-238-478-2 | ||
024 | 7 | |a 10.1142/3835 |2 doi | |
035 | |a (ZDB-124-WOP)00004007 | ||
035 | |a (OCoLC)1012623137 | ||
035 | |a (DE-599)BVBBV044633854 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 512.482 |2 22 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Hsiang, Wu Yi |d 1937- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on Lie groups |c W.Y. Hsiang |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2002 | |
300 | |a v, 108 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on university mathematics |v vol. 2 | |
520 | |a This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints. For example, the orbital geometry of adjoint action, is regarded as the geometric organization of the totality of non-commutativity of a given compact connected Lie group, while the maximal tori theorem of É. Cartan and the Weyl reduction of the adjoint action on G to the Weyl group action on a chosen maximal torus are presented as the key results that provide a clear-cut understanding of the orbital geometry | ||
650 | 4 | |a Lie groups | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Typ-Gruppe |0 (DE-588)4167650-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Typ-Gruppe |0 (DE-588)4167650-6 |D s |
689 | 0 | 1 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810235222 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810235224 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3835#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030031826 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3835#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178044836904960 |
---|---|
any_adam_object | |
author | Hsiang, Wu Yi 1937- |
author_facet | Hsiang, Wu Yi 1937- |
author_role | aut |
author_sort | Hsiang, Wu Yi 1937- |
author_variant | w y h wy wyh |
building | Verbundindex |
bvnumber | BV044633854 |
classification_rvk | SK 340 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004007 (OCoLC)1012623137 (DE-599)BVBBV044633854 |
dewey-full | 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 |
dewey-search | 512.482 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02827nmm a2200517zcb4500</leader><controlfield tag="001">BV044633854</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812384782</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-238-478-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3835</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012623137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044633854</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsiang, Wu Yi</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Lie groups</subfield><subfield code="c">W.Y. Hsiang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">v, 108 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on university mathematics</subfield><subfield code="v">vol. 2</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints. For example, the orbital geometry of adjoint action, is regarded as the geometric organization of the totality of non-commutativity of a given compact connected Lie group, while the maximal tori theorem of É. Cartan and the Weyl reduction of the adjoint action on G to the Weyl group action on a chosen maximal torus are presented as the key results that provide a clear-cut understanding of the orbital geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Typ-Gruppe</subfield><subfield code="0">(DE-588)4167650-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Typ-Gruppe</subfield><subfield code="0">(DE-588)4167650-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810235222</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810235224</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3835#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030031826</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3835#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044633854 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:43Z |
institution | BVB |
isbn | 9789812384782 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030031826 |
oclc_num | 1012623137 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | v, 108 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series on university mathematics |
spelling | Hsiang, Wu Yi 1937- Verfasser aut Lectures on Lie groups W.Y. Hsiang Singapore World Scientific Pub. Co. c2002 v, 108 p. ill txt rdacontent c rdamedia cr rdacarrier Series on university mathematics vol. 2 This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints. For example, the orbital geometry of adjoint action, is regarded as the geometric organization of the totality of non-commutativity of a given compact connected Lie group, while the maximal tori theorem of É. Cartan and the Weyl reduction of the adjoint action on G to the Weyl group action on a chosen maximal torus are presented as the key results that provide a clear-cut understanding of the orbital geometry Lie groups Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Lie-Typ-Gruppe (DE-588)4167650-6 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Typ-Gruppe (DE-588)4167650-6 s Lie-Algebra (DE-588)4130355-6 s 1\p DE-604 Lie-Gruppe (DE-588)4035695-4 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9789810235222 Erscheint auch als Druck-Ausgabe 9810235224 http://www.worldscientific.com/worldscibooks/10.1142/3835#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hsiang, Wu Yi 1937- Lectures on Lie groups Lie groups Lie-Gruppe (DE-588)4035695-4 gnd Lie-Typ-Gruppe (DE-588)4167650-6 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4167650-6 (DE-588)4130355-6 |
title | Lectures on Lie groups |
title_auth | Lectures on Lie groups |
title_exact_search | Lectures on Lie groups |
title_full | Lectures on Lie groups W.Y. Hsiang |
title_fullStr | Lectures on Lie groups W.Y. Hsiang |
title_full_unstemmed | Lectures on Lie groups W.Y. Hsiang |
title_short | Lectures on Lie groups |
title_sort | lectures on lie groups |
topic | Lie groups Lie-Gruppe (DE-588)4035695-4 gnd Lie-Typ-Gruppe (DE-588)4167650-6 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Lie groups Lie-Gruppe Lie-Typ-Gruppe Lie-Algebra |
url | http://www.worldscientific.com/worldscibooks/10.1142/3835#t=toc |
work_keys_str_mv | AT hsiangwuyi lecturesonliegroups |