Geometry of mobius transformations: elliptic, parabolic and hyperbolic actions of SL[symbol]([real number])
This book is a unique exposition of rich and inspiring geometries associated with Mobius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL[symbol](real number). Starting from elementary facts in group theory, the auth...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
c2012
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book is a unique exposition of rich and inspiring geometries associated with Mobius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL[symbol](real number). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F. Klein, who defined geometry as a study of invariants under a transitive group action. The treatment of elliptic, parabolic and hyperbolic Mobius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered |
Beschreibung: | xiv, 192 p. ill |
ISBN: | 9781848168596 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044633528 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2012 |||| o||u| ||||||eng d | ||
020 | |a 9781848168596 |c electronic bk. |9 978-1-84816-859-6 | ||
024 | 7 | |a 10.1142/P835 |2 doi | |
035 | |a (ZDB-124-WOP)00002727 | ||
035 | |a (OCoLC)1012661650 | ||
035 | |a (DE-599)BVBBV044633528 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 516.1 |2 22 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
100 | 1 | |a Kisil, Vladimir V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry of mobius transformations |b elliptic, parabolic and hyperbolic actions of SL[symbol]([real number]) |c Vladimir V. Kisil |
264 | 1 | |a London |b Imperial College Press |c c2012 | |
300 | |a xiv, 192 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book is a unique exposition of rich and inspiring geometries associated with Mobius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL[symbol](real number). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F. Klein, who defined geometry as a study of invariants under a transitive group action. The treatment of elliptic, parabolic and hyperbolic Mobius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered | ||
650 | 4 | |a Mobius transformations | |
650 | 0 | 7 | |a Möbius-Geometrie |0 (DE-588)4750877-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kleinsche Gruppe |0 (DE-588)4164159-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transformation |0 (DE-588)4451062-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Möbius-Geometrie |0 (DE-588)4750877-2 |D s |
689 | 0 | 1 | |a Kleinsche Gruppe |0 (DE-588)4164159-0 |D s |
689 | 0 | 2 | |a Transformation |0 (DE-588)4451062-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1848168586 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781848168589 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/P835#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030031500 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/P835#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178044165816320 |
---|---|
any_adam_object | |
author | Kisil, Vladimir V. |
author_facet | Kisil, Vladimir V. |
author_role | aut |
author_sort | Kisil, Vladimir V. |
author_variant | v v k vv vvk |
building | Verbundindex |
bvnumber | BV044633528 |
classification_rvk | SK 350 SK 750 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00002727 (OCoLC)1012661650 (DE-599)BVBBV044633528 |
dewey-full | 516.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.1 |
dewey-search | 516.1 |
dewey-sort | 3516.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02871nmm a2200481zc 4500</leader><controlfield tag="001">BV044633528</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848168596</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-84816-859-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/P835</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00002727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012661650</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044633528</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kisil, Vladimir V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of mobius transformations</subfield><subfield code="b">elliptic, parabolic and hyperbolic actions of SL[symbol]([real number])</subfield><subfield code="c">Vladimir V. Kisil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">c2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 192 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a unique exposition of rich and inspiring geometries associated with Mobius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL[symbol](real number). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F. Klein, who defined geometry as a study of invariants under a transitive group action. The treatment of elliptic, parabolic and hyperbolic Mobius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobius transformations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Möbius-Geometrie</subfield><subfield code="0">(DE-588)4750877-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kleinsche Gruppe</subfield><subfield code="0">(DE-588)4164159-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transformation</subfield><subfield code="0">(DE-588)4451062-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Möbius-Geometrie</subfield><subfield code="0">(DE-588)4750877-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kleinsche Gruppe</subfield><subfield code="0">(DE-588)4164159-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Transformation</subfield><subfield code="0">(DE-588)4451062-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1848168586</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781848168589</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/P835#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030031500</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/P835#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044633528 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:42Z |
institution | BVB |
isbn | 9781848168596 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030031500 |
oclc_num | 1012661650 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 192 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Imperial College Press |
record_format | marc |
spelling | Kisil, Vladimir V. Verfasser aut Geometry of mobius transformations elliptic, parabolic and hyperbolic actions of SL[symbol]([real number]) Vladimir V. Kisil London Imperial College Press c2012 xiv, 192 p. ill txt rdacontent c rdamedia cr rdacarrier This book is a unique exposition of rich and inspiring geometries associated with Mobius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL[symbol](real number). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F. Klein, who defined geometry as a study of invariants under a transitive group action. The treatment of elliptic, parabolic and hyperbolic Mobius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered Mobius transformations Möbius-Geometrie (DE-588)4750877-2 gnd rswk-swf Kleinsche Gruppe (DE-588)4164159-0 gnd rswk-swf Transformation (DE-588)4451062-7 gnd rswk-swf Möbius-Geometrie (DE-588)4750877-2 s Kleinsche Gruppe (DE-588)4164159-0 s Transformation (DE-588)4451062-7 s DE-604 Erscheint auch als Druck-Ausgabe 1848168586 Erscheint auch als Druck-Ausgabe 9781848168589 http://www.worldscientific.com/worldscibooks/10.1142/P835#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Kisil, Vladimir V. Geometry of mobius transformations elliptic, parabolic and hyperbolic actions of SL[symbol]([real number]) Mobius transformations Möbius-Geometrie (DE-588)4750877-2 gnd Kleinsche Gruppe (DE-588)4164159-0 gnd Transformation (DE-588)4451062-7 gnd |
subject_GND | (DE-588)4750877-2 (DE-588)4164159-0 (DE-588)4451062-7 |
title | Geometry of mobius transformations elliptic, parabolic and hyperbolic actions of SL[symbol]([real number]) |
title_auth | Geometry of mobius transformations elliptic, parabolic and hyperbolic actions of SL[symbol]([real number]) |
title_exact_search | Geometry of mobius transformations elliptic, parabolic and hyperbolic actions of SL[symbol]([real number]) |
title_full | Geometry of mobius transformations elliptic, parabolic and hyperbolic actions of SL[symbol]([real number]) Vladimir V. Kisil |
title_fullStr | Geometry of mobius transformations elliptic, parabolic and hyperbolic actions of SL[symbol]([real number]) Vladimir V. Kisil |
title_full_unstemmed | Geometry of mobius transformations elliptic, parabolic and hyperbolic actions of SL[symbol]([real number]) Vladimir V. Kisil |
title_short | Geometry of mobius transformations |
title_sort | geometry of mobius transformations elliptic parabolic and hyperbolic actions of sl symbol real number |
title_sub | elliptic, parabolic and hyperbolic actions of SL[symbol]([real number]) |
topic | Mobius transformations Möbius-Geometrie (DE-588)4750877-2 gnd Kleinsche Gruppe (DE-588)4164159-0 gnd Transformation (DE-588)4451062-7 gnd |
topic_facet | Mobius transformations Möbius-Geometrie Kleinsche Gruppe Transformation |
url | http://www.worldscientific.com/worldscibooks/10.1142/P835#t=toc |
work_keys_str_mv | AT kisilvladimirv geometryofmobiustransformationsellipticparabolicandhyperbolicactionsofslsymbolrealnumber |