The principles of Newtonian and quantum mechanics: the need for Planck's constant, h
This book deals with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. The Bohmian interpretation of quantum mechanics is discussed. Phase space quantization is achieved using the "princip...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
c2001
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book deals with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. The Bohmian interpretation of quantum mechanics is discussed. Phase space quantization is achieved using the "principle of the symplectic camel", which is a recently discovered deep topological property of Hamiltonian flows. The mathematical tools developed in this book are the theory of the metaplectic group, the Maslov index in a precise form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. A precise form of Feynman's integral is introduced in connection with the extended metaplectic representation |
Beschreibung: | xxii, 357 p |
ISBN: | 9781848161429 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044633331 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781848161429 |c electronic bk. |9 978-1-84816-142-9 | ||
024 | 7 | |a 10.1142/P235 |2 doi | |
035 | |a (ZDB-124-WOP)00004246 | ||
035 | |a (OCoLC)1012709952 | ||
035 | |a (DE-599)BVBBV044633331 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.15564 |2 22 | |
084 | |a UF 1000 |0 (DE-625)145552: |2 rvk | ||
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
100 | 1 | |a Gosson, Maurice de |e Verfasser |4 aut | |
245 | 1 | 0 | |a The principles of Newtonian and quantum mechanics |b the need for Planck's constant, h |c M A de Gosson |
264 | 1 | |a London |b Imperial College Press |c c2001 | |
300 | |a xxii, 357 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book deals with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. The Bohmian interpretation of quantum mechanics is discussed. Phase space quantization is achieved using the "principle of the symplectic camel", which is a recently discovered deep topological property of Hamiltonian flows. The mathematical tools developed in this book are the theory of the metaplectic group, the Maslov index in a precise form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. A precise form of Feynman's integral is introduced in connection with the extended metaplectic representation | ||
650 | 4 | |a Lagrangian functions | |
650 | 4 | |a Maslov index | |
650 | 4 | |a Geometric quantization | |
650 | 0 | 7 | |a Maslov-Index |0 (DE-588)4169023-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lagrange-Funktion |0 (DE-588)4166459-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanik |0 (DE-588)4038168-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mechanik |0 (DE-588)4038168-7 |D s |
689 | 0 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 2 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 3 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lagrange-Funktion |0 (DE-588)4166459-0 |D s |
689 | 1 | 1 | |a Maslov-Index |0 (DE-588)4169023-0 |D s |
689 | 1 | 2 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1860942741 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781860942747 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/P235#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030031303 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/P235#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178043739045888 |
---|---|
any_adam_object | |
author | Gosson, Maurice de |
author_facet | Gosson, Maurice de |
author_role | aut |
author_sort | Gosson, Maurice de |
author_variant | m d g md mdg |
building | Verbundindex |
bvnumber | BV044633331 |
classification_rvk | UF 1000 UK 1000 UK 1200 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004246 (OCoLC)1012709952 (DE-599)BVBBV044633331 |
dewey-full | 530.15564 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15564 |
dewey-search | 530.15564 |
dewey-sort | 3530.15564 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03427nmm a2200649zc 4500</leader><controlfield tag="001">BV044633331</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848161429</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-84816-142-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/P235</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004246</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012709952</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044633331</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15564</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1000</subfield><subfield code="0">(DE-625)145552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gosson, Maurice de</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The principles of Newtonian and quantum mechanics</subfield><subfield code="b">the need for Planck's constant, h</subfield><subfield code="c">M A de Gosson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">c2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxii, 357 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book deals with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. The Bohmian interpretation of quantum mechanics is discussed. Phase space quantization is achieved using the "principle of the symplectic camel", which is a recently discovered deep topological property of Hamiltonian flows. The mathematical tools developed in this book are the theory of the metaplectic group, the Maslov index in a precise form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. A precise form of Feynman's integral is introduced in connection with the extended metaplectic representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrangian functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maslov index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric quantization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maslov-Index</subfield><subfield code="0">(DE-588)4169023-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lagrange-Funktion</subfield><subfield code="0">(DE-588)4166459-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lagrange-Funktion</subfield><subfield code="0">(DE-588)4166459-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maslov-Index</subfield><subfield code="0">(DE-588)4169023-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1860942741</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781860942747</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/P235#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030031303</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/P235#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044633331 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:42Z |
institution | BVB |
isbn | 9781848161429 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030031303 |
oclc_num | 1012709952 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xxii, 357 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Imperial College Press |
record_format | marc |
spelling | Gosson, Maurice de Verfasser aut The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson London Imperial College Press c2001 xxii, 357 p txt rdacontent c rdamedia cr rdacarrier This book deals with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. The Bohmian interpretation of quantum mechanics is discussed. Phase space quantization is achieved using the "principle of the symplectic camel", which is a recently discovered deep topological property of Hamiltonian flows. The mathematical tools developed in this book are the theory of the metaplectic group, the Maslov index in a precise form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. A precise form of Feynman's integral is introduced in connection with the extended metaplectic representation Lagrangian functions Maslov index Geometric quantization Maslov-Index (DE-588)4169023-0 gnd rswk-swf Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Lagrange-Funktion (DE-588)4166459-0 gnd rswk-swf Mechanik (DE-588)4038168-7 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Mechanik (DE-588)4038168-7 s Quantenmechanik (DE-588)4047989-4 s Mathematische Physik (DE-588)4037952-8 s Symplektische Geometrie (DE-588)4194232-2 s 1\p DE-604 Lagrange-Funktion (DE-588)4166459-0 s Maslov-Index (DE-588)4169023-0 s Geometrische Quantisierung (DE-588)4156720-1 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 1860942741 Erscheint auch als Druck-Ausgabe 9781860942747 http://www.worldscientific.com/worldscibooks/10.1142/P235#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gosson, Maurice de The principles of Newtonian and quantum mechanics the need for Planck's constant, h Lagrangian functions Maslov index Geometric quantization Maslov-Index (DE-588)4169023-0 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Symplektische Geometrie (DE-588)4194232-2 gnd Mathematische Physik (DE-588)4037952-8 gnd Lagrange-Funktion (DE-588)4166459-0 gnd Mechanik (DE-588)4038168-7 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4169023-0 (DE-588)4156720-1 (DE-588)4194232-2 (DE-588)4037952-8 (DE-588)4166459-0 (DE-588)4038168-7 (DE-588)4047989-4 |
title | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_auth | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_exact_search | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_full | The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson |
title_fullStr | The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson |
title_full_unstemmed | The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson |
title_short | The principles of Newtonian and quantum mechanics |
title_sort | the principles of newtonian and quantum mechanics the need for planck s constant h |
title_sub | the need for Planck's constant, h |
topic | Lagrangian functions Maslov index Geometric quantization Maslov-Index (DE-588)4169023-0 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Symplektische Geometrie (DE-588)4194232-2 gnd Mathematische Physik (DE-588)4037952-8 gnd Lagrange-Funktion (DE-588)4166459-0 gnd Mechanik (DE-588)4038168-7 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Lagrangian functions Maslov index Geometric quantization Maslov-Index Geometrische Quantisierung Symplektische Geometrie Mathematische Physik Lagrange-Funktion Mechanik Quantenmechanik |
url | http://www.worldscientific.com/worldscibooks/10.1142/P235#t=toc |
work_keys_str_mv | AT gossonmauricede theprinciplesofnewtonianandquantummechanicstheneedforplancksconstanth |