Group theory and general relativity: representations of the Lorenti group and their applications to the gravitational field
This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theor...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
c2000
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory. There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups - particularly the Lorentz and the SL(2,C) groups - to the theory of general relativity. Each chapter is concluded with a set of problems.The topics covered range from the fundamentals of general relativity theory, its formulation as an SL(2,C) gauge theory, to exact solutions of the Einstein gravitational field equations. The important Bondi-Metzner-Sachs group, and its representations, conclude the book. The entire book is self-contained in both group theory and general relativity theory, and no prior knowledge of either is assumed. The subject of this book constitutes a relevant link between field theoreticians and general relativity theoreticians, who usually work rather independently of each other. The treatise is highly topical and of real interest to theoretical physicists, general relativists and applied mathematicians. It is invaluable to graduate students and research workers in quantum field theory, general relativity and elementary particle theory |
Beschreibung: | xviii, 391 p. ill |
ISBN: | 9781848160187 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044633237 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781848160187 |c electronic bk. |9 978-1-84816-018-7 | ||
024 | 7 | |a 10.1142/P199 |2 doi | |
035 | |a (ZDB-124-WOP)00003130 | ||
035 | |a (OCoLC)1012724214 | ||
035 | |a (DE-599)BVBBV044633237 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.11015122 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UH 8300 |0 (DE-625)145781: |2 rvk | ||
100 | 1 | |a Carmeli, Moshe |d 1933- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Group theory and general relativity |b representations of the Lorenti group and their applications to the gravitational field |c Moshe Carmeli |
264 | 1 | |a London |b Imperial College Press |c c2000 | |
300 | |a xviii, 391 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory. There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups - particularly the Lorentz and the SL(2,C) groups - to the theory of general relativity. Each chapter is concluded with a set of problems.The topics covered range from the fundamentals of general relativity theory, its formulation as an SL(2,C) gauge theory, to exact solutions of the Einstein gravitational field equations. The important Bondi-Metzner-Sachs group, and its representations, conclude the book. The entire book is self-contained in both group theory and general relativity theory, and no prior knowledge of either is assumed. The subject of this book constitutes a relevant link between field theoreticians and general relativity theoreticians, who usually work rather independently of each other. The treatise is highly topical and of real interest to theoretical physicists, general relativists and applied mathematicians. It is invaluable to graduate students and research workers in quantum field theory, general relativity and elementary particle theory | ||
650 | 4 | |a Lorentz transformations | |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Relativitätstheorie |0 (DE-588)4049363-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lorentz-Gruppe |0 (DE-588)4036335-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gravitationsfeld |0 (DE-588)4072014-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |D s |
689 | 0 | 1 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lorentz-Gruppe |0 (DE-588)4036335-1 |D s |
689 | 1 | 1 | |a Gravitationsfeld |0 (DE-588)4072014-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Lorentz-Gruppe |0 (DE-588)4036335-1 |D s |
689 | 2 | 1 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Relativitätstheorie |0 (DE-588)4049363-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1860942342 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781860942341 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/P199#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030031209 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/P199#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178043558690816 |
---|---|
any_adam_object | |
author | Carmeli, Moshe 1933- |
author_facet | Carmeli, Moshe 1933- |
author_role | aut |
author_sort | Carmeli, Moshe 1933- |
author_variant | m c mc |
building | Verbundindex |
bvnumber | BV044633237 |
classification_rvk | SK 950 UH 8300 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003130 (OCoLC)1012724214 (DE-599)BVBBV044633237 |
dewey-full | 530.11015122 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.11015122 |
dewey-search | 530.11015122 |
dewey-sort | 3530.11015122 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04578nmm a2200697zc 4500</leader><controlfield tag="001">BV044633237</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848160187</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-84816-018-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/P199</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003130</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012724214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044633237</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11015122</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8300</subfield><subfield code="0">(DE-625)145781:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carmeli, Moshe</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Group theory and general relativity</subfield><subfield code="b">representations of the Lorenti group and their applications to the gravitational field</subfield><subfield code="c">Moshe Carmeli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">c2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 391 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory. There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups - particularly the Lorentz and the SL(2,C) groups - to the theory of general relativity. Each chapter is concluded with a set of problems.The topics covered range from the fundamentals of general relativity theory, its formulation as an SL(2,C) gauge theory, to exact solutions of the Einstein gravitational field equations. The important Bondi-Metzner-Sachs group, and its representations, conclude the book. The entire book is self-contained in both group theory and general relativity theory, and no prior knowledge of either is assumed. The subject of this book constitutes a relevant link between field theoreticians and general relativity theoreticians, who usually work rather independently of each other. The treatise is highly topical and of real interest to theoretical physicists, general relativists and applied mathematicians. It is invaluable to graduate students and research workers in quantum field theory, general relativity and elementary particle theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lorentz transformations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lorentz-Gruppe</subfield><subfield code="0">(DE-588)4036335-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gravitationsfeld</subfield><subfield code="0">(DE-588)4072014-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lorentz-Gruppe</subfield><subfield code="0">(DE-588)4036335-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Gravitationsfeld</subfield><subfield code="0">(DE-588)4072014-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lorentz-Gruppe</subfield><subfield code="0">(DE-588)4036335-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1860942342</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781860942341</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/P199#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030031209</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/P199#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044633237 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:42Z |
institution | BVB |
isbn | 9781848160187 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030031209 |
oclc_num | 1012724214 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xviii, 391 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Imperial College Press |
record_format | marc |
spelling | Carmeli, Moshe 1933- Verfasser aut Group theory and general relativity representations of the Lorenti group and their applications to the gravitational field Moshe Carmeli London Imperial College Press c2000 xviii, 391 p. ill txt rdacontent c rdamedia cr rdacarrier This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory. There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups - particularly the Lorentz and the SL(2,C) groups - to the theory of general relativity. Each chapter is concluded with a set of problems.The topics covered range from the fundamentals of general relativity theory, its formulation as an SL(2,C) gauge theory, to exact solutions of the Einstein gravitational field equations. The important Bondi-Metzner-Sachs group, and its representations, conclude the book. The entire book is self-contained in both group theory and general relativity theory, and no prior knowledge of either is assumed. The subject of this book constitutes a relevant link between field theoreticians and general relativity theoreticians, who usually work rather independently of each other. The treatise is highly topical and of real interest to theoretical physicists, general relativists and applied mathematicians. It is invaluable to graduate students and research workers in quantum field theory, general relativity and elementary particle theory Lorentz transformations Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Relativitätstheorie (DE-588)4049363-5 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Lorentz-Gruppe (DE-588)4036335-1 gnd rswk-swf Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd rswk-swf Gravitationsfeld (DE-588)4072014-7 gnd rswk-swf Allgemeine Relativitätstheorie (DE-588)4112491-1 s Gruppentheorie (DE-588)4072157-7 s 1\p DE-604 Lorentz-Gruppe (DE-588)4036335-1 s Gravitationsfeld (DE-588)4072014-7 s 2\p DE-604 Darstellung Mathematik (DE-588)4128289-9 s 3\p DE-604 Relativitätstheorie (DE-588)4049363-5 s 4\p DE-604 Physik (DE-588)4045956-1 s 5\p DE-604 Erscheint auch als Druck-Ausgabe 1860942342 Erscheint auch als Druck-Ausgabe 9781860942341 http://www.worldscientific.com/worldscibooks/10.1142/P199#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Carmeli, Moshe 1933- Group theory and general relativity representations of the Lorenti group and their applications to the gravitational field Lorentz transformations Gruppentheorie (DE-588)4072157-7 gnd Relativitätstheorie (DE-588)4049363-5 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Physik (DE-588)4045956-1 gnd Lorentz-Gruppe (DE-588)4036335-1 gnd Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Gravitationsfeld (DE-588)4072014-7 gnd |
subject_GND | (DE-588)4072157-7 (DE-588)4049363-5 (DE-588)4128289-9 (DE-588)4045956-1 (DE-588)4036335-1 (DE-588)4112491-1 (DE-588)4072014-7 |
title | Group theory and general relativity representations of the Lorenti group and their applications to the gravitational field |
title_auth | Group theory and general relativity representations of the Lorenti group and their applications to the gravitational field |
title_exact_search | Group theory and general relativity representations of the Lorenti group and their applications to the gravitational field |
title_full | Group theory and general relativity representations of the Lorenti group and their applications to the gravitational field Moshe Carmeli |
title_fullStr | Group theory and general relativity representations of the Lorenti group and their applications to the gravitational field Moshe Carmeli |
title_full_unstemmed | Group theory and general relativity representations of the Lorenti group and their applications to the gravitational field Moshe Carmeli |
title_short | Group theory and general relativity |
title_sort | group theory and general relativity representations of the lorenti group and their applications to the gravitational field |
title_sub | representations of the Lorenti group and their applications to the gravitational field |
topic | Lorentz transformations Gruppentheorie (DE-588)4072157-7 gnd Relativitätstheorie (DE-588)4049363-5 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Physik (DE-588)4045956-1 gnd Lorentz-Gruppe (DE-588)4036335-1 gnd Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Gravitationsfeld (DE-588)4072014-7 gnd |
topic_facet | Lorentz transformations Gruppentheorie Relativitätstheorie Darstellung Mathematik Physik Lorentz-Gruppe Allgemeine Relativitätstheorie Gravitationsfeld |
url | http://www.worldscientific.com/worldscibooks/10.1142/P199#t=toc |
work_keys_str_mv | AT carmelimoshe grouptheoryandgeneralrelativityrepresentationsofthelorentigroupandtheirapplicationstothegravitationalfield |