Genericity in polynomial optimization:
"In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
World Scientific Publishing Europe Ltd.
c2017
|
Schriftenreihe: | Series on optimization and its applications
v. 3 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | "In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community. Explanations focus on critical points and tangencies of polynomial optimization, Hölderian error bounds for polynomial systems, Frank–Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization."--Publisher's website |
Beschreibung: | Title from PDF file title page (viewed December 27, 2016) |
Beschreibung: | 1 online resource (261 p.) |
ISBN: | 9781786342225 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044633192 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781786342225 |c ebook |9 978-1-78634-222-5 | ||
024 | 7 | |a 10.1142/q0066 |2 doi | |
035 | |a (ZDB-124-WOP)000q0066 | ||
035 | |a (OCoLC)1012681706 | ||
035 | |a (DE-599)BVBBV044633192 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 519.6 |2 23 | |
100 | 1 | |a Hà, Huy-Vui |e Verfasser |4 aut | |
245 | 1 | 0 | |a Genericity in polynomial optimization |c Huy-Vui Ha, Tien-Son Pham |
264 | 1 | |a London |b World Scientific Publishing Europe Ltd. |c c2017 | |
300 | |a 1 online resource (261 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on optimization and its applications |v v. 3 | |
500 | |a Title from PDF file title page (viewed December 27, 2016) | ||
520 | |a "In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community. Explanations focus on critical points and tangencies of polynomial optimization, Hölderian error bounds for polynomial systems, Frank–Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization."--Publisher's website | ||
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Polynomials | |
650 | 4 | |a Electronic books | |
700 | 1 | |a Phạm, Tiên-Son |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/q0066#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030031164 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/q0066#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178043463270400 |
---|---|
any_adam_object | |
author | Hà, Huy-Vui |
author_facet | Hà, Huy-Vui |
author_role | aut |
author_sort | Hà, Huy-Vui |
author_variant | h v h hvh |
building | Verbundindex |
bvnumber | BV044633192 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)000q0066 (OCoLC)1012681706 (DE-599)BVBBV044633192 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02599nmm a2200409zc 4500</leader><controlfield tag="001">BV044633192</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781786342225</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-78634-222-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/q0066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)000q0066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012681706</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044633192</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hà, Huy-Vui</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genericity in polynomial optimization</subfield><subfield code="c">Huy-Vui Ha, Tien-Son Pham</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">World Scientific Publishing Europe Ltd.</subfield><subfield code="c">c2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (261 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on optimization and its applications</subfield><subfield code="v">v. 3</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF file title page (viewed December 27, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community. Explanations focus on critical points and tangencies of polynomial optimization, Hölderian error bounds for polynomial systems, Frank–Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization."--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phạm, Tiên-Son</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/q0066#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030031164</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/q0066#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044633192 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:42Z |
institution | BVB |
isbn | 9781786342225 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030031164 |
oclc_num | 1012681706 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | 1 online resource (261 p.) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | World Scientific Publishing Europe Ltd. |
record_format | marc |
series2 | Series on optimization and its applications |
spelling | Hà, Huy-Vui Verfasser aut Genericity in polynomial optimization Huy-Vui Ha, Tien-Son Pham London World Scientific Publishing Europe Ltd. c2017 1 online resource (261 p.) txt rdacontent c rdamedia cr rdacarrier Series on optimization and its applications v. 3 Title from PDF file title page (viewed December 27, 2016) "In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community. Explanations focus on critical points and tangencies of polynomial optimization, Hölderian error bounds for polynomial systems, Frank–Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization."--Publisher's website Mathematical optimization Polynomials Electronic books Phạm, Tiên-Son Sonstige oth http://www.worldscientific.com/worldscibooks/10.1142/q0066#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Hà, Huy-Vui Genericity in polynomial optimization Mathematical optimization Polynomials Electronic books |
title | Genericity in polynomial optimization |
title_auth | Genericity in polynomial optimization |
title_exact_search | Genericity in polynomial optimization |
title_full | Genericity in polynomial optimization Huy-Vui Ha, Tien-Son Pham |
title_fullStr | Genericity in polynomial optimization Huy-Vui Ha, Tien-Son Pham |
title_full_unstemmed | Genericity in polynomial optimization Huy-Vui Ha, Tien-Son Pham |
title_short | Genericity in polynomial optimization |
title_sort | genericity in polynomial optimization |
topic | Mathematical optimization Polynomials Electronic books |
topic_facet | Mathematical optimization Polynomials Electronic books |
url | http://www.worldscientific.com/worldscibooks/10.1142/q0066#t=toc |
work_keys_str_mv | AT hahuyvui genericityinpolynomialoptimization AT phamtienson genericityinpolynomialoptimization |