Genericity in polynomial optimization:

"In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hà, Huy-Vui (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: London World Scientific Publishing Europe Ltd. c2017
Schriftenreihe:Series on optimization and its applications v. 3
Schlagworte:
Online-Zugang:FHN01
Volltext
Zusammenfassung:"In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community. Explanations focus on critical points and tangencies of polynomial optimization, Hölderian error bounds for polynomial systems, Frank–Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization."--Publisher's website
Beschreibung:Title from PDF file title page (viewed December 27, 2016)
Beschreibung:1 online resource (261 p.)
ISBN:9781786342225

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen