Deep learning for computer architects:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[San Rafael, Cal.]
Morgan & Claypool
[2017]
|
Schriftenreihe: | Synthesis lectures on computer architecture
# 41 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references (pages 91-106) |
Beschreibung: | xiv, 109 Seiten Illustrationen, Diagramme |
ISBN: | 9781627057288 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044560049 | ||
003 | DE-604 | ||
005 | 20181029 | ||
007 | t | ||
008 | 171027s2017 a||| |||| 00||| eng d | ||
020 | |a 9781627057288 |9 978-1-62705-728-8 | ||
035 | |a (OCoLC)1011102261 | ||
035 | |a (DE-599)BVBBV044560049 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-384 |a DE-739 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Reagen, Brandon |e Verfasser |4 aut | |
245 | 1 | 0 | |a Deep learning for computer architects |c Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks |
264 | 1 | |a [San Rafael, Cal.] |b Morgan & Claypool |c [2017] | |
300 | |a xiv, 109 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Synthesis lectures on computer architecture |v # 41 | |
500 | |a Includes bibliographical references (pages 91-106) | ||
650 | 4 | |a deep learning | |
650 | 4 | |a neural network accelerators | |
650 | 4 | |a hardware software co-design | |
650 | 4 | |a DNN benchmarking and characterization | |
650 | 4 | |a hardware support for machine learning | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Computer architecture | |
650 | 7 | |a Computer architecture |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 7 | |a COMPUTERS / General |2 bisacsh | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Adolf, Robert |e Sonstige |4 oth | |
700 | 1 | |a Whatmough, Paul |e Sonstige |4 oth | |
700 | 1 | |a Wei, Gu-Yeon |e Sonstige |0 (DE-588)1142194612 |4 oth | |
700 | 1 | |a Brooks, David |d 1975- |e Sonstige |0 (DE-588)130013560 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-62705-985-5 |
830 | 0 | |a Synthesis lectures on computer architecture |v # 41 |w (DE-604)BV023068349 |9 41 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029958688&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029958688 |
Datensatz im Suchindex
_version_ | 1804177930364911616 |
---|---|
adam_text | Preface....................................................................xiii
1 Introduction.................................................................1
1.1 The Rises and Falls of Neural Networks................................1
1.2 The Third Wave........................................................3
1.2.1 A Virtuous Cycle................................................3
1.3 The Role of Hardware in Deep Learning.................................5
1.3.1 State of the Practice ..........................................5
2 Foundations of Deep Learning.................................................9
2.1 Neural Networks ......................................................9
2.1.1 Biological Neural Networks.....................................10
2.1.2 Artificial Neural Networks.....................................11
2.1.3 Deep Neural Networks...........................................14
2.2 Learning.............................................................15
2.2.1 Types of Learning..............................................17
2.2.2 How Deep Neural Networks Learn.................................18
3 Methods and Models.........................................................25
3.1 An Overview of Advanced Neural Network Methods.......................25
3.1.1 Model Architectures............................................25
3.1.2 Specialized Layers.............................................28
3.2 Reference Workloads for Modern Deep Learning.........................29
3.2.1 Criteria for a Deep Learning Workload Suite...................29
3.2.2 The Fathom Workloads...........................................31
3.3 Computational Intuition behind Deep Learning.........................34
3.3.1 Measurement and Analysis in a Deep Learning Framework.........35
3.3.2 Operation Type Profiling.......................................36
3.3.3 Performance Similarity.........................................38
3.3.4 Training and Inference.........................................39
3.3.5 Parallelism and Operation Balance..............................40
xii
4 Neural Network Accelerator Optimization: A Case Study........................43
4.1 Neural Networks and the Simplicity Wall...............................44
4.1.1 Beyond the Wall: Bounding Unsafe Optimizations..................44
4.2 Minerva: A Three-pronged Approach.....................................46
4.3 Establishing a Baseline: Safe Optimizations...........................49
4.3.1 Training Space Exploration .....................................49
4.3.2 Accelerator Design Space........................................50
4.4 Low-power Neural Network Accelerators: Unsafe Optimizations...........53
4.4.1 Data Type Quantization..........................................53
4.4.2 Selective Operation Pruning.....................................55
4.4.3 SRAM Fault Mitigation...........................................56
4.5 Discussion............................................................60
4.6 Looking Forward.......................................................61
5 A Literature Survey and Review...............................................63
5.1 Introduction..........................................................63
5.2 Taxonomy..............................................................63
5.3 Algorithms............................................................65
5.3.1 Data Types......................................................66
5.3.2 Model Sparsity..................................................67
5.4 Architecture..........................................................70
5.4.1 Model Sparsity..................................................72
5.4.2 Model Support...................................................74
5.4.3 Data Movement...................................................81
5.5 Circuits..............................................................83
5.5.1 Data Movement...................................................83
5.5.2 Fault Tolerance.................................................85
6 Conclusion...................................................................89
Bibliography.................................................................91
Authors’ Biographies........................................................107
|
any_adam_object | 1 |
author | Reagen, Brandon |
author_GND | (DE-588)1142194612 (DE-588)130013560 |
author_facet | Reagen, Brandon |
author_role | aut |
author_sort | Reagen, Brandon |
author_variant | b r br |
building | Verbundindex |
bvnumber | BV044560049 |
classification_rvk | ST 300 |
ctrlnum | (OCoLC)1011102261 (DE-599)BVBBV044560049 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02349nam a2200553 cb4500</leader><controlfield tag="001">BV044560049</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181029 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">171027s2017 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781627057288</subfield><subfield code="9">978-1-62705-728-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1011102261</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044560049</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reagen, Brandon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning for computer architects</subfield><subfield code="c">Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[San Rafael, Cal.]</subfield><subfield code="b">Morgan & Claypool</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 109 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Synthesis lectures on computer architecture</subfield><subfield code="v"># 41</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 91-106)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural network accelerators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hardware software co-design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNN benchmarking and characterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hardware support for machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer architecture</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adolf, Robert</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Whatmough, Paul</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Gu-Yeon</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1142194612</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brooks, David</subfield><subfield code="d">1975-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)130013560</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-62705-985-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Synthesis lectures on computer architecture</subfield><subfield code="v"># 41</subfield><subfield code="w">(DE-604)BV023068349</subfield><subfield code="9">41</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029958688&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029958688</subfield></datafield></record></collection> |
id | DE-604.BV044560049 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:55:54Z |
institution | BVB |
isbn | 9781627057288 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029958688 |
oclc_num | 1011102261 |
open_access_boolean | |
owner | DE-29T DE-384 DE-739 |
owner_facet | DE-29T DE-384 DE-739 |
physical | xiv, 109 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Morgan & Claypool |
record_format | marc |
series | Synthesis lectures on computer architecture |
series2 | Synthesis lectures on computer architecture |
spelling | Reagen, Brandon Verfasser aut Deep learning for computer architects Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks [San Rafael, Cal.] Morgan & Claypool [2017] xiv, 109 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Synthesis lectures on computer architecture # 41 Includes bibliographical references (pages 91-106) deep learning neural network accelerators hardware software co-design DNN benchmarking and characterization hardware support for machine learning Machine learning Neural networks (Computer science) Computer architecture Computer architecture fast Machine learning fast Neural networks (Computer science) fast COMPUTERS / General bisacsh Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s DE-604 Adolf, Robert Sonstige oth Whatmough, Paul Sonstige oth Wei, Gu-Yeon Sonstige (DE-588)1142194612 oth Brooks, David 1975- Sonstige (DE-588)130013560 oth Erscheint auch als Online-Ausgabe 978-1-62705-985-5 Synthesis lectures on computer architecture # 41 (DE-604)BV023068349 41 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029958688&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Reagen, Brandon Deep learning for computer architects Synthesis lectures on computer architecture deep learning neural network accelerators hardware software co-design DNN benchmarking and characterization hardware support for machine learning Machine learning Neural networks (Computer science) Computer architecture Computer architecture fast Machine learning fast Neural networks (Computer science) fast COMPUTERS / General bisacsh Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 |
title | Deep learning for computer architects |
title_auth | Deep learning for computer architects |
title_exact_search | Deep learning for computer architects |
title_full | Deep learning for computer architects Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks |
title_fullStr | Deep learning for computer architects Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks |
title_full_unstemmed | Deep learning for computer architects Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks |
title_short | Deep learning for computer architects |
title_sort | deep learning for computer architects |
topic | deep learning neural network accelerators hardware software co-design DNN benchmarking and characterization hardware support for machine learning Machine learning Neural networks (Computer science) Computer architecture Computer architecture fast Machine learning fast Neural networks (Computer science) fast COMPUTERS / General bisacsh Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | deep learning neural network accelerators hardware software co-design DNN benchmarking and characterization hardware support for machine learning Machine learning Neural networks (Computer science) Computer architecture COMPUTERS / General Maschinelles Lernen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029958688&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV023068349 |
work_keys_str_mv | AT reagenbrandon deeplearningforcomputerarchitects AT adolfrobert deeplearningforcomputerarchitects AT whatmoughpaul deeplearningforcomputerarchitects AT weiguyeon deeplearningforcomputerarchitects AT brooksdavid deeplearningforcomputerarchitects |