Deep learning with Python:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Shelter Island, NY
Manning
[2018]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxi, 361 Seiten Illustrationen, Diagramme |
ISBN: | 9781617294433 1617294438 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044558948 | ||
003 | DE-604 | ||
005 | 20210217 | ||
007 | t | ||
008 | 171026s2018 a||| |||| 00||| eng d | ||
020 | |a 9781617294433 |c pbk |9 978-1-61729-443-3 | ||
020 | |a 1617294438 |c pbk |9 1-61729-443-8 | ||
035 | |a (OCoLC)1019988472 | ||
035 | |a (DE-599)HBZHT019377467 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-M347 |a DE-20 |a DE-11 |a DE-703 |a DE-29T |a DE-739 |a DE-523 |a DE-863 |a DE-573 |a DE-898 |a DE-83 |a DE-706 |a DE-2070s |a DE-B768 |a DE-Aug4 |a DE-522 |a DE-526 |a DE-1043 |a DE-355 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
084 | |a 68T05 |2 msc | ||
100 | 1 | |a Chollet, François |0 (DE-588)1151332550 |4 aut | |
245 | 1 | 0 | |a Deep learning with Python |c François Chollet |
264 | 1 | |a Shelter Island, NY |b Manning |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a xxi, 361 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |D s |
689 | 0 | 1 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 2 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 1 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029957611&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029957611 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-863_location | 1000 |
---|---|
DE-BY-FWS_call_number | 1000/ST 302 C547 |
DE-BY-FWS_katkey | 686418 |
DE-BY-FWS_media_number | 083101410281 |
_version_ | 1806177061228773376 |
adam_text | Part 1
Part 2
brief contents
Fundamentals of deep learning..............................1
1 ■ What is deep learning? 3
2 ■ Before we begin: the mathematical building blocks of neural
networks 25
3 ■ Getting started with neural networks 56
4 ■ Fundamentals of machine learning 93
Deep learning in practice.................................117
5 ■ Deep learning for computer vision 119
6 ■ Deep learning for text and sequences 178
7 ■ Advanced deep-learning best practices 233
8 ■ Generative deep learning 269
9 ■ Conclusions 314
contents
preface xiii
acknowledgments xv
about this book xvi
about the author xx
about the cover xxi
Fart 1 Fundamentals of deep learning.........1
i
What is deep learning? 3
1.1 Artificial intelligence, machine learning,
and deep learning 4
Artificial intelligence 4 ■ Machine learning 4 ■ Learning
representations from data 6 ■ The “deep ” in deep learning 8
Understanding how deep learning works, in three figures 9
What deep learning has achieved so far 11 ■ Don ’t believe
the short-term hype 12 ■ The promise of AI 13
1.2 Before deep learning: a brief history of machine
learning 14
Probabilistic modeling 14 ■ Early neural networks 14
Kernel methods 15 ■ Decision trees, random forests,
and gradient boosting machines 16 ■ Back to neural
networks 17 ■ What makes deep learning different 17
The modem machine-learning landscape 18
vu
CONTENTS
«M
vin
1.3 Why deep learning? Why now? 20
Hardware 20 ■ Data 21 ■ Algorithms 21 ■ A new
wave of investment 22 ■ The democratization of deep
learning 23 ■ Will it last ? 23
Before we begin: the mathematical building blocks of
neural networks 25
2.1 A first look at a neural network 27
2.2 Data representations for neural networks 31
Scalars (0D tensors) 31 ■ Vectors (ID tensors) 31
Matrices (2D tensors) 31 ■ 3D tensors and higher-
dimensional tensors 32 • Key attributes 32
Manipulating tensors in Numpy 34 ■ The notion
of data batches 34 ■ Real-world examples of data
tensors 35 ■ Vector data 35 ■ Timeseries data or
sequence data 35 ■ Image data 36 ■ Video data 31
2.3 The gears of neural networks: tensor operations 38
Element-wise operations 38 ■ Broadcasting 39 ■ Tensor
dot 40 ■ Tensor reshaping 42 ■ Geometric interpretation
of tensor operations 43 ■ A geometric interpretation of deep
learning 44
2.4 The engine of neural networks: gradient-based
optimization 46
What’s a derivative? 47 ■ Derivative of a tensor operation:
the gradient 48 ■ Stochastic gradient descent 48
Chaining derivatives: the Backpropagation algorithm 51
2.5 Looking back at our first example 53
2.6 Chapter summary 55
Getting started with neural networks 56
3.1 Anatomy of a neural network 58
Layers: the building blocks of deep learning 58 ■ Models:
networks of layers 59 ■ Loss functions and optimizers: keys
to configuring the learning process 60
3.2 Introduction to Keras 61
Keras, TensorFlow, Theano, and CNTK 62 ■ Developing
with Keras: a quick overview 62
3.3 Setting up a deep-learning workstation 65
Jupyter notebooks: the preferred way to run deep-learning
experiments 65 ■ Getting Keras running: two options 66
CONTENTS
ix
Running deep-learning jobs in the cloud: pros and cons 66
What is the best GPU for deep learning? 66
3.4 Classifying movie reviews: a binary classification
example 68
The IMDB dataset 68 ■ Preparing the data 69
Building your network 70 • Validating your approach 73
Using a trained network to generate predictions on new
data 76 ■ Further experiments 77 ■ Wrapping up 77
3.5 Classifying newswires: a multiclass classification
example 78
The Reuters dataset 78 ■ Preparing the data 79
Building your network 79 ■ Validating your approach 80
Generating predictions on new data 83 ■ A different way to
handle the labels and the loss 83 ■ The importance of
having sufficiently large intermediate layers 83 ■ Further
experiments 84 ■ Wrapping up 84
3.6 Predicting house prices: a regression example 85
The Boston Housing Price dataset 85 ■ Preparing the
data 86 ■ Building your network 86 ■ Validating
your approach using K-fold validation 87 • Wrapping up 91
3.7 Chapter summary 92
Fundamentals of machine learning 93
4.1 Four branches of machine learning
94
Supervised learning 94 ■ Unsupervised learning 94
Self-supervised learning 94 ■ Reinforcement learning 95
4.2 Evaluating machine-learning models 97
Training; validation, and test sets 97 ■ Things to
keep in mind 100
4.3 Data preprocessing, feature engineering,
and feature learning 101
Data preprocessing for neural networks 101 ■ Feature
engineering 102
4.4 Overfitting and underfitting 104
Reducing the network s size 104 ■ Adding weight
regularization 107 * Adding dropout 109
4.5 The universal workflow of machine learning 111
Defining the problem and assembling a dataset 111
Choosing a measure of success 112 ■ Deciding on an
X
CONTENTS
evaluation protocol 112 ■ Preparing your data 112
Developing a model that does better than a baseline 113
Scaling up: developing a model that overfits 114
Regularizing your model and tuning your hyperparameters 114
4.6 Chapter summary 116
Part 2 Deep learning in practice.............117
Deep learning for computer vision 119
5.1 Introduction to convnets 120
The convolution operation 122 ■ The max-pooling
operation 127
5.2 Training a convnet from scratch on a small dataset 130
The relevance of deep learning for small-data problems 130
Downloading the data 131 ■ Building your network 133
Data preprocessing 135 ■ Using data augmentation 138
5.3 Using a pretrained convnet 143
Feature extraction 143 ■ Fine-tuning 152 ■ Wrapping
up 159
5.4 Visualizing what convnets learn 160
Visualizing intermediate activations 160 ■ Visualizing
convnet filters 167■ Visualizing heatmaps of class
activation 172
5.5 Chapter summary 177
Deep learning for text and sequences
6.1 Working with text data 180
178
One-hot encoding of xvords and characters 181 ■ Using
word embeddings 184 ■ Putting it all together: from raw
text to word embeddings 188 ■ Wrapping up 195
6.2 Understanding recurrent neural networks 196
A recurrent layer in Keras 198 ■ Understanding the
LSTM and GRU layers 202 ■ A concrete LSTM example
in Keras 204 ■ Wrapping up 206
6.3 Advanced use of recurrent neural networks 207
A temperature-forecasting problem 207 ■ Preparing the
data 210 1 A common-sense, non-machine-leaming
baseline 212 ■ A basic machine-learning approach 213
A first recurrent baseline 215 ■ Using recurrent dropout
CONTENTS
xi
to fight overfitting 216 ■ Stacking recurrent layers 217
Using bidirectional RNNs 219 ■ Going even further 222
Wrapping up 223
6.4 Sequence processing with convnets 225
Understanding ID convolution for sequence data 225
ID pooling for sequence data 226 ■ Implementing a ID
convnet 226 ■ Combining CNNs and RNNs to process long
sequences 228 ■ Wrapping up 231
6.5 Chapter summary 232
J Advanced deep-learning best practices
7.1 Going beyond the Sequential model: the Keras
functional API 234
Introduction to the functional API 236 ■ Multi-input
models 238 ■ Multi-output models 240 ■ Directed acyclic
graphs of layers 242 ■ Layer weight sharing 246 ■ Models
as layers 247 * Wrapping up 248
7.2 Inspecting and monitoring deep-learning models using
Keras callbacks and TensorBoard 249
Using callbacks to act on a model during training 249
Introduction to TensorBoard: the TensorFlow visualization
framework 252 ■ Wrapping up 259
7.3 Getting the most out of your models 260
Advanced architecture patterns 260 * Hyperparameter
optimization 263 ■ Model ensembling 264 * Wrapping
up 266
7.4 Chapter summary 268
Generative deep learning 269
8.1 Text generation with LSTM 271
A brief history of generative recurrent networks 271 ■ How
do you generate sequence data ? 272 ■ The importance of
the sampling strategy 272 * Implementing character-level
LSTM text generation 274 ■ Wrapping up 279
8.2 DeepDream 280
Implementing DeepDream in Keras 281 ■ Wrapping up 286
8.3 Neural style transfer 287
The content loss 288 ■ The style loss 288 ■ Neural style
transfer in Keras 289 • Wrapping up 295
Xll
CONTENTS
8.4 Generating images with variational autoencoders 296
Sampling from latent spaces of images 296 9 Concept vectors
for image editing 297 ■ Variational autoencoders 298
Wrapping up 304
8.5 Introduction to generative adversarial networks 305
A schematic GAN implementation 307 ■ A bag of tricks 307
The generator 308 9 The discriminator 309 ■ The adversarial
network 310 9 How to train your DCGAN 310 9 Wrapping
up 312
8.6 Chapter summary 313
Conclusions 314
9.1 Key concepts in review 315
Various approaches to AI 315 ■ What makes deep learning
special within the field of machine learning 315 ■ How to
think about deep learning 316 ■ Key enabling technologies 317
The universal machine-learning workflow 318 ■ Key network
architectures 319 ■ The space of possibilities 322
9.2 The limitations of deep learning 325
The risk of anthropomorphizing machine-learning models 325
Local generalization vs. extreme generalization 32 7
Wrapping up 329
9.3 The future of deep learning 330
Models as programs 330 ■ Beyond backpropagation and
differentiable layers 332 ■ Automated machine learning 332
Lifelong learning and modular subroutine reuse 333
The long-term vision 335
9.4 Staying up to date in a fast-moving field 337
Practice on real-world problems using Kaggle 33 7
Read about the latest developments on arXiv 337
Explore the Kerns ecosystem 338
9.5 Final words 339
appendix A Installing Keras and its dependencies on Ubuntu 340
appendix B RunningJupy ter notebooks on an EC2 GPU instance 345
index 353
|
any_adam_object | 1 |
author | Chollet, François |
author_GND | (DE-588)1151332550 |
author_facet | Chollet, François |
author_role | aut |
author_sort | Chollet, François |
author_variant | f c fc |
building | Verbundindex |
bvnumber | BV044558948 |
classification_rvk | ST 250 ST 300 ST 302 ST 301 |
classification_tum | DAT 708f |
ctrlnum | (OCoLC)1019988472 (DE-599)HBZHT019377467 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02318nam a2200517 c 4500</leader><controlfield tag="001">BV044558948</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210217 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">171026s2018 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781617294433</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-61729-443-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1617294438</subfield><subfield code="c">pbk</subfield><subfield code="9">1-61729-443-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1019988472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT019377467</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-B768</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68T05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chollet, François</subfield><subfield code="0">(DE-588)1151332550</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning with Python</subfield><subfield code="c">François Chollet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Shelter Island, NY</subfield><subfield code="b">Manning</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 361 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029957611&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029957611</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044558948 |
illustrated | Illustrated |
indexdate | 2024-08-01T11:31:13Z |
institution | BVB |
isbn | 9781617294433 1617294438 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029957611 |
oclc_num | 1019988472 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-M347 DE-20 DE-11 DE-703 DE-29T DE-739 DE-523 DE-863 DE-BY-FWS DE-573 DE-898 DE-BY-UBR DE-83 DE-706 DE-2070s DE-B768 DE-Aug4 DE-522 DE-526 DE-1043 DE-355 DE-BY-UBR |
owner_facet | DE-91G DE-BY-TUM DE-M347 DE-20 DE-11 DE-703 DE-29T DE-739 DE-523 DE-863 DE-BY-FWS DE-573 DE-898 DE-BY-UBR DE-83 DE-706 DE-2070s DE-B768 DE-Aug4 DE-522 DE-526 DE-1043 DE-355 DE-BY-UBR |
physical | xxi, 361 Seiten Illustrationen, Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Manning |
record_format | marc |
spellingShingle | Chollet, François Deep learning with Python Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd Keras Framework, Informatik (DE-588)1160521077 gnd Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4434275-5 (DE-588)1160521077 (DE-588)1135597375 |
title | Deep learning with Python |
title_auth | Deep learning with Python |
title_exact_search | Deep learning with Python |
title_full | Deep learning with Python François Chollet |
title_fullStr | Deep learning with Python François Chollet |
title_full_unstemmed | Deep learning with Python François Chollet |
title_short | Deep learning with Python |
title_sort | deep learning with python |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd Keras Framework, Informatik (DE-588)1160521077 gnd Deep learning (DE-588)1135597375 gnd |
topic_facet | Maschinelles Lernen Python Programmiersprache Keras Framework, Informatik Deep learning |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029957611&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cholletfrancois deeplearningwithpython |
Inhaltsverzeichnis
Würzburg Zentralbibliothek Lesesaal
Signatur: |
1000 ST 302 C547 |
---|---|
Exemplar 1 | ausleihbar Checked out – Rückgabe bis: 02.12.2024 Vormerken |