Object detection using feature mining in a distributed machine learning framework:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Düsseldorf
VDI Verlag GmbH
[2017]
|
Ausgabe: | Als Manuskript gedruckt |
Schriftenreihe: | Fortschritt-Berichte VDI. Reihe 10, Informatik/Kommunikation
Nr. 855 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 148 Seiten Illustrationen, Diagramme |
ISBN: | 9783183855100 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044551146 | ||
003 | DE-604 | ||
005 | 20171215 | ||
007 | t | ||
008 | 171023s2017 a||| m||| 00||| eng d | ||
020 | |a 9783183855100 |9 978-3-18-385510-0 | ||
035 | |a (OCoLC)1010381576 | ||
035 | |a (DE-599)BVBBV044551146 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-210 |a DE-634 | ||
084 | |a ST 620 |0 (DE-625)143684: |2 rvk | ||
100 | 1 | |a Ehlers, Arne |e Verfasser |4 aut | |
245 | 1 | 0 | |a Object detection using feature mining in a distributed machine learning framework |c Dipl.-Ing. Arne Ehler, Hannover ; tnt Institut für Informationsverarbeitung |
250 | |a Als Manuskript gedruckt | ||
264 | 1 | |a Düsseldorf |b VDI Verlag GmbH |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a XIII, 148 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Fortschritt-Berichte VDI. Reihe 10, Informatik/Kommunikation |v Nr. 855 | |
502 | |b Dissertation |c Gottfried Wilhelm Leibniz Universität Hannover |d 2017 | ||
650 | 0 | 7 | |a Boosting |0 (DE-588)4839853-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dempster-Shafer-Theorie |0 (DE-588)4395834-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Objekterkennung |0 (DE-588)4314334-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klassifikator |g Informatik |0 (DE-588)4288547-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Objekterkennung |0 (DE-588)4314334-9 |D s |
689 | 0 | 1 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 3 | |a Klassifikator |g Informatik |0 (DE-588)4288547-4 |D s |
689 | 0 | 4 | |a Boosting |0 (DE-588)4839853-6 |D s |
689 | 0 | 5 | |a Dempster-Shafer-Theorie |0 (DE-588)4395834-5 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Leibniz Universität Hannover |b Institut für Theoretische Nachrichtentechnik und Informationsverarbeitung |e Sonstige |0 (DE-588)5123663-1 |4 oth | |
830 | 0 | |a Fortschritt-Berichte VDI. Reihe 10, Informatik/Kommunikation |v Nr. 855 |w (DE-604)BV000897204 |9 855 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029950001&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029950001 |
Datensatz im Suchindex
_version_ | 1804177915425849344 |
---|---|
adam_text | C ONTENTS
A B B REVIATION S V II
S YM B OLS AND N O TA TIO N IX
A B STR A CT/K U RZFA SSU N G X II
1 IN TROD U CTION 1
2 R ELA TED W ORK AND D A TA S ETS 16
2.1 MACHINE LEARNING FOR VISUAL OBJECT D ETECTIO N
....................................... 17
2.1.1 FEATURE P
ROVISION..........................................................................
17
2.1.2 LEARNING A LG O RITH M
S.................................................................... 19
2.2 DATA SETS AND
BENCHMARKS.......................................................................
21
3 F UN DAM ENTALS 28
3.1 COMMON
FEATURES......................................................................................
29
3.1.1 HAAR-LIKE FEATURES
.......................................................................
29
3.1.2 HISTOGRAMS OF ORIENTED G RAD IEN TS
..............................................
31
3.1.3 FROM FEATURES TO C LASSIFIERS
.......................................................
33
3.2 SUPERVISED MACHINE L E A R N IN G
................................................................. 34
3.2.1 ADAPTIVE B O O S TIN G
.......................................................................
35
3.2.2 VIOLA AND JONES DETECTION FRAMEWORK
.....................................
38
3.2.3 MARGIN
ANALYSIS.............................................................................
50
3.2.4 VARIANTS OF BOOSTING ALGORITHM S
.................................................
51
3.3 DATA A NALY
SIS.............................................................................................
52
3.3.1 CLUSTER
ANALYSIS.............................................................................
53
3.3.2 PRINCIPAL COMPONENT A NALYSIS
....................................................
56
3.4 DETECTOR PERFORMANCE M EASU
RES.............................................................. 58
4 D ISTRIB U TED M ACHINE LEARNING FRAM EW ORK 62
5 LEARNING FROM SPARSE T RAINING D A TA 68
5.1 TRAINING DATA
AUGMENTATION....................................................................
70
5.2 EXPERIMENTAL R E SU
LTS................................................................................
71
5.2.1 EXPERIMENTS ON FACE D E TE C TIO N
.................................................
71
5.2.2 EXPERIMENTS ON CELL DATA S E T
....................................................
74
CONTENTS
5.3 D
ISCUSSION..................................................................................................
74
6 FRACTAL IN TEGRAL P A TH S 76
6.1 BOOSTED FRACTAL INTEGRAL P A TH S
................................................................. 79
6.1.1 F R A C TA LS
..........................................................................................
79
6.1.2 FRACTAL F
EATURES..............................................................................
80
6.1.3 FRACTAL PROPERTIES
..........................................................................
80
6.1.4 CONSTRUCTION OF F R A C TA LS
.............................................................. 82
6.1.5 FEATURE T Y P E
S.................................................................................
82
6.2 EXPERIMENTAL R E SU
LTS.................................................................................
83
6.2.1 FACE DETECTION
.............................................................................
83
6.2.2 MICROSCOPIC CELL D
ETECTION........................................................... 87
6.2.3 TRAINING AND COMPUTING T IM
E..................................................... 89
6.3 D
ISCUSSION...................................................................................................
89
7 M U LTI-F EATU RE M ININ G FOR D E TE C TO R L EARNING 90
7.1 2REC F E A TU RE
S.............................................................................................
93
7.2 KEYPOINT HOG F E A TU R E S
..........................................................................
95
7.3 EXPERIMENTAL R E SU
LTS.................................................................................
99
7.3.1 FACE DETECTION
.............................................................................
99
7.3.2 LATERAL CAR DETECTION
....................................................................110
7.3.3 PEDESTRIAN D E TE C TIO N
.......................................................................113
7.3.4 INSIGHTS INTO THE TRAINING P RO C E SS
.................................................
118
7.4 D
ISCUSSION......................................................................................................120
8 N ON -M AXIM U M S UP PRESSION U SING D E M P STE R *S T H EO RY O F E
V ID EN CE 121
8.1 MERGING MULTIPLE DETECTIONS BASED ON DEMPSTER*S THEORY
....................123
8.1.1 CASCADED C
LASSIFIER..........................................................................123
8.1.2 DEMPSTER-SHAFER THEORY OF E V ID E N C E
...........................................124
8.1.3 JOINT CONFIDENCE BASED ON D EM PSTER-S HAFER
..............................
125
8.1.4 CONFIDENCE-BASED DETECTION M E RG IN G
...........................................125
8.2 EXPERIMENTAL R E SU
LTS...................................................................................
126
8.2.1 FACE DETECTION
................................................................................
127
8.2.2 LATERAL CAR DETECTION
....................................................................129
8.3 D
ISCUSSION......................................................................................................129
9 C ON CLU SION 131
A L INDENM AYER S Y STEM S D EFIN IN G FRACTAL IN TEGRAL P A TH S 135
A.L L-SYSTEM DEFINING GOSPER C U R V E
.............................................................136
A.2 L-SYSTEM DEFINING E-CURVE
.......................................................................136
B IB LIOGRAP H Y 138
|
any_adam_object | 1 |
author | Ehlers, Arne |
author_facet | Ehlers, Arne |
author_role | aut |
author_sort | Ehlers, Arne |
author_variant | a e ae |
building | Verbundindex |
bvnumber | BV044551146 |
classification_rvk | ST 620 |
ctrlnum | (OCoLC)1010381576 (DE-599)BVBBV044551146 |
discipline | Informatik |
edition | Als Manuskript gedruckt |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02493nam a2200517 cb4500</leader><controlfield tag="001">BV044551146</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">171023s2017 a||| m||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783183855100</subfield><subfield code="9">978-3-18-385510-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1010381576</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044551146</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 620</subfield><subfield code="0">(DE-625)143684:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ehlers, Arne</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Object detection using feature mining in a distributed machine learning framework</subfield><subfield code="c">Dipl.-Ing. Arne Ehler, Hannover ; tnt Institut für Informationsverarbeitung</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Als Manuskript gedruckt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Düsseldorf</subfield><subfield code="b">VDI Verlag GmbH</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 148 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fortschritt-Berichte VDI. Reihe 10, Informatik/Kommunikation</subfield><subfield code="v">Nr. 855</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Gottfried Wilhelm Leibniz Universität Hannover</subfield><subfield code="d">2017</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Boosting</subfield><subfield code="0">(DE-588)4839853-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dempster-Shafer-Theorie</subfield><subfield code="0">(DE-588)4395834-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Objekterkennung</subfield><subfield code="0">(DE-588)4314334-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikator</subfield><subfield code="g">Informatik</subfield><subfield code="0">(DE-588)4288547-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Objekterkennung</subfield><subfield code="0">(DE-588)4314334-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Klassifikator</subfield><subfield code="g">Informatik</subfield><subfield code="0">(DE-588)4288547-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Boosting</subfield><subfield code="0">(DE-588)4839853-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Dempster-Shafer-Theorie</subfield><subfield code="0">(DE-588)4395834-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Leibniz Universität Hannover</subfield><subfield code="b">Institut für Theoretische Nachrichtentechnik und Informationsverarbeitung</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)5123663-1</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fortschritt-Berichte VDI. Reihe 10, Informatik/Kommunikation</subfield><subfield code="v">Nr. 855</subfield><subfield code="w">(DE-604)BV000897204</subfield><subfield code="9">855</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029950001&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029950001</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV044551146 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:55:40Z |
institution | BVB |
institution_GND | (DE-588)5123663-1 |
isbn | 9783183855100 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029950001 |
oclc_num | 1010381576 |
open_access_boolean | |
owner | DE-83 DE-210 DE-634 |
owner_facet | DE-83 DE-210 DE-634 |
physical | XIII, 148 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | VDI Verlag GmbH |
record_format | marc |
series | Fortschritt-Berichte VDI. Reihe 10, Informatik/Kommunikation |
series2 | Fortschritt-Berichte VDI. Reihe 10, Informatik/Kommunikation |
spelling | Ehlers, Arne Verfasser aut Object detection using feature mining in a distributed machine learning framework Dipl.-Ing. Arne Ehler, Hannover ; tnt Institut für Informationsverarbeitung Als Manuskript gedruckt Düsseldorf VDI Verlag GmbH [2017] © 2017 XIII, 148 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Fortschritt-Berichte VDI. Reihe 10, Informatik/Kommunikation Nr. 855 Dissertation Gottfried Wilhelm Leibniz Universität Hannover 2017 Boosting (DE-588)4839853-6 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Dempster-Shafer-Theorie (DE-588)4395834-5 gnd rswk-swf Merkmalsextraktion (DE-588)4314440-8 gnd rswk-swf Objekterkennung (DE-588)4314334-9 gnd rswk-swf Klassifikator Informatik (DE-588)4288547-4 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Objekterkennung (DE-588)4314334-9 s Merkmalsextraktion (DE-588)4314440-8 s Maschinelles Lernen (DE-588)4193754-5 s Klassifikator Informatik (DE-588)4288547-4 s Boosting (DE-588)4839853-6 s Dempster-Shafer-Theorie (DE-588)4395834-5 s DE-604 Leibniz Universität Hannover Institut für Theoretische Nachrichtentechnik und Informationsverarbeitung Sonstige (DE-588)5123663-1 oth Fortschritt-Berichte VDI. Reihe 10, Informatik/Kommunikation Nr. 855 (DE-604)BV000897204 855 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029950001&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ehlers, Arne Object detection using feature mining in a distributed machine learning framework Fortschritt-Berichte VDI. Reihe 10, Informatik/Kommunikation Boosting (DE-588)4839853-6 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Dempster-Shafer-Theorie (DE-588)4395834-5 gnd Merkmalsextraktion (DE-588)4314440-8 gnd Objekterkennung (DE-588)4314334-9 gnd Klassifikator Informatik (DE-588)4288547-4 gnd |
subject_GND | (DE-588)4839853-6 (DE-588)4193754-5 (DE-588)4395834-5 (DE-588)4314440-8 (DE-588)4314334-9 (DE-588)4288547-4 (DE-588)4113937-9 |
title | Object detection using feature mining in a distributed machine learning framework |
title_auth | Object detection using feature mining in a distributed machine learning framework |
title_exact_search | Object detection using feature mining in a distributed machine learning framework |
title_full | Object detection using feature mining in a distributed machine learning framework Dipl.-Ing. Arne Ehler, Hannover ; tnt Institut für Informationsverarbeitung |
title_fullStr | Object detection using feature mining in a distributed machine learning framework Dipl.-Ing. Arne Ehler, Hannover ; tnt Institut für Informationsverarbeitung |
title_full_unstemmed | Object detection using feature mining in a distributed machine learning framework Dipl.-Ing. Arne Ehler, Hannover ; tnt Institut für Informationsverarbeitung |
title_short | Object detection using feature mining in a distributed machine learning framework |
title_sort | object detection using feature mining in a distributed machine learning framework |
topic | Boosting (DE-588)4839853-6 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Dempster-Shafer-Theorie (DE-588)4395834-5 gnd Merkmalsextraktion (DE-588)4314440-8 gnd Objekterkennung (DE-588)4314334-9 gnd Klassifikator Informatik (DE-588)4288547-4 gnd |
topic_facet | Boosting Maschinelles Lernen Dempster-Shafer-Theorie Merkmalsextraktion Objekterkennung Klassifikator Informatik Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029950001&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000897204 |
work_keys_str_mv | AT ehlersarne objectdetectionusingfeaturemininginadistributedmachinelearningframework AT leibnizuniversitathannoverinstitutfurtheoretischenachrichtentechnikundinformationsverarbeitung objectdetectionusingfeaturemininginadistributedmachinelearningframework |