Big data and differential privacy: analysis strategies for railway track engineering
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ, USA
John Wiley & Sons, Inc.
2017
|
Schriftenreihe: | Wiley series in operations research and management science
|
Schlagworte: | |
Online-Zugang: | FRO01 UBG01 UBT01 UBY01 Volltext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (xiii, 252 Seiten) Diagramme |
ISBN: | 9781119229070 9781119229056 9781119229063 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV044537192 | ||
003 | DE-604 | ||
005 | 20200309 | ||
007 | cr|uuu---uuuuu | ||
008 | 171013s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781119229070 |c Online |9 978-1-119-22907-0 | ||
020 | |a 9781119229056 |c PDF |9 978-1-119-22905-6 | ||
020 | |a 9781119229063 |c ePub |9 978-1-119-22906-3 | ||
024 | 7 | |a 10.1002/9781119229070 |2 doi | |
035 | |a (OCoLC)1011368969 | ||
035 | |a (DE-599)BVBBV044537192 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-861 |a DE-703 | ||
050 | 0 | |a TF241 | |
082 | 0 | |a 625.1/4028557 |2 23 | |
082 | 0 | |a 625.1/4028557 | |
084 | |a QH 234 |0 (DE-625)141549: |2 rvk | ||
100 | 1 | |a Attoh-Okine, Nii O. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Big data and differential privacy |b analysis strategies for railway track engineering |c Nii O. Attoh-Okine |
264 | 1 | |a Hoboken, NJ, USA |b John Wiley & Sons, Inc. |c 2017 | |
300 | |a 1 Online-Ressource (xiii, 252 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley series in operations research and management science | |
500 | |a Includes bibliographical references and index | ||
505 | 8 | |a Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Chapter 1 Introduction; 1.1 General; 1.2 Track Components; 1.3 Characteristics of Railway Track Data; 1.4 Railway Track Engineering Problems; 1.5 Wheel-Rail Interface Data; 1.5.1 Switches and Crossings; 1.6 Geometry Data; 1.7 Track Geometry Degradation Models; 1.7.1 Deterministic Models; 1.7.1.1 Linear Models; 1.7.1.2 Nonlinear Models; 1.7.2 Stochastic Models; 1.7.3 Discussion; 1.8 Rail Defect Data; 1.9 Inspection and Detection Systems; 1.10 Rail Grinding; 1.11 Traditional Data Analysis Techniques; 1.11.1 Emerging Data Analysis | |
505 | 8 | |a 1.12 RemarksReferences; Chapter 2 Data Analysis -- Basic Overview; 2.1 Introduction; 2.2 Exploratory Data Analysis (EDA); 2.3 Symbolic Data Analysis; 2.3.1 Building Symbolic Data; 2.3.2 Advantages of Symbolic Data; 2.4 Imputation; 2.5 Bayesian Methods and Big Data Analysis; 2.6 Remarks; References; Chapter 3 Machine Learning: A Basic Overview; 3.1 Introduction; 3.2 Supervised Learning; 3.3 Unsupervised Learning; 3.4 Semi-Supervised Learning; 3.5 Reinforcement Learning; 3.6 Data Integration; 3.7 Data Science Ontology; 3.7.1 Kernels; 3.7.1.1 General; 3.7.1.2 Learning Process | |
505 | 8 | |a 3.7.2 Basic Operations with Kernels3.7.3 Different Kernel Types; 3.7.4 Intuitive Example; 3.7.5 Kernel Methods; 3.7.5.1 Support Vector Machines; 3.8 Imbalanced Classification; 3.9 Model Validation; 3.9.1 Receiver Operating Characteristic (ROC) Curves; 3.9.1.1 ROC Curves; 3.10 Ensemble Methods; 3.10.1 General; 3.10.2 Bagging; 3.10.3 Boosting; 3.11 Big P and Small N (P k N); 3.11.1 Bias and Variances; 3.11.2 Multivariate Adaptive Regression Splines (MARS); 3.12 Deep Learning; 3.12.1 General; 3.12.2 Deep Belief Networks; 3.12.2.1 Restricted Boltzmann Machines (RBM) | |
505 | 8 | |a 3.12.2.2 Deep Belief Nets (DBN)3.12.3 Convolutional Neural Networks (CNN); 3.12.4 Granular Computing (Rough Set Theory); 3.12.5 Clustering; 3.12.5.1 Measures of Similarity or Dissimilarity; 3.12.5.2 Hierarchical Methods; 3.12.5.3 Non-Hierarchical Clustering; 3.12.5.4 k-Means Algorithm; 3.12.5.5 Expectation-Maximization (EM) Algorithms; 3.13 Data Stream Processing; 3.13.1 Methods and Analysis; 3.13.2 LogLog Counting; 3.13.3 Count-Min Sketch; 3.13.3.1 Online Support Regression; 3.14 Remarks; References; Chapter 4 Basic Foundations of Big Data; 4.1 Introduction; 4.2 Query | |
505 | 8 | |a 4.3 Taxonomy of Big Data Analytics in Railway Track Engineering4.4 Data Engineering; 4.5 Remarks; References; Chapter 5 Hilbert-Huang Transform, Profile, Signal, and Image Analysis; 5.1 Hilbert-Huang Transform; 5.1.1 Traditional Empirical Mode Decomposition; 5.1.1.1 Side Effect (Boundary Effect); 5.1.1.2 Example; 5.1.1.3 Stopping Criterion; 5.1.2 Ensemble Empirical Mode Decomposition (EEMD); 5.1.2.1 Post-Processing EEMD; 5.1.3 Complex Empirical Mode Decomposition (CEMD); 5.1.4 Spectral Analysis; 5.1.5 Bidimensional Empirical Mode Decomposition (BEMD); 5.1.5.1 Example | |
650 | 4 | |a TECHNOLOGY & ENGINEERING / Engineering (General) | |
650 | 4 | |a Big data | |
650 | 4 | |a Data protection / Mathematics | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Railroad tracks / Mathematical models | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Railroad tracks / Mathematical models | |
650 | 4 | |a Data protection / Mathematics | |
650 | 4 | |a Big data | |
650 | 4 | |a Differential equations | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eisenbahntechnik |0 (DE-588)4151498-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 1 | |a Eisenbahntechnik |0 (DE-588)4151498-1 |D s |
689 | 0 | 2 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 3 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-119-22904-9 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q UBG_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029936334 | ||
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070 |l FRO01 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070 |l UBG01 |p ZDB-35-WIC |q UBG_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070 |l UBT01 |p ZDB-35-WIC |q UBT_PDA_WIC_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070 |l UBY01 |p ZDB-35-WIC |q UBY_PDA_WIC_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177893128929280 |
---|---|
any_adam_object | |
author | Attoh-Okine, Nii O. |
author_facet | Attoh-Okine, Nii O. |
author_role | aut |
author_sort | Attoh-Okine, Nii O. |
author_variant | n o a o noa noao |
building | Verbundindex |
bvnumber | BV044537192 |
callnumber-first | T - Technology |
callnumber-label | TF241 |
callnumber-raw | TF241 |
callnumber-search | TF241 |
callnumber-sort | TF 3241 |
callnumber-subject | TF - Railroad Engineering and Operation |
classification_rvk | QH 234 |
collection | ZDB-35-WIC |
contents | Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Chapter 1 Introduction; 1.1 General; 1.2 Track Components; 1.3 Characteristics of Railway Track Data; 1.4 Railway Track Engineering Problems; 1.5 Wheel-Rail Interface Data; 1.5.1 Switches and Crossings; 1.6 Geometry Data; 1.7 Track Geometry Degradation Models; 1.7.1 Deterministic Models; 1.7.1.1 Linear Models; 1.7.1.2 Nonlinear Models; 1.7.2 Stochastic Models; 1.7.3 Discussion; 1.8 Rail Defect Data; 1.9 Inspection and Detection Systems; 1.10 Rail Grinding; 1.11 Traditional Data Analysis Techniques; 1.11.1 Emerging Data Analysis 1.12 RemarksReferences; Chapter 2 Data Analysis -- Basic Overview; 2.1 Introduction; 2.2 Exploratory Data Analysis (EDA); 2.3 Symbolic Data Analysis; 2.3.1 Building Symbolic Data; 2.3.2 Advantages of Symbolic Data; 2.4 Imputation; 2.5 Bayesian Methods and Big Data Analysis; 2.6 Remarks; References; Chapter 3 Machine Learning: A Basic Overview; 3.1 Introduction; 3.2 Supervised Learning; 3.3 Unsupervised Learning; 3.4 Semi-Supervised Learning; 3.5 Reinforcement Learning; 3.6 Data Integration; 3.7 Data Science Ontology; 3.7.1 Kernels; 3.7.1.1 General; 3.7.1.2 Learning Process 3.7.2 Basic Operations with Kernels3.7.3 Different Kernel Types; 3.7.4 Intuitive Example; 3.7.5 Kernel Methods; 3.7.5.1 Support Vector Machines; 3.8 Imbalanced Classification; 3.9 Model Validation; 3.9.1 Receiver Operating Characteristic (ROC) Curves; 3.9.1.1 ROC Curves; 3.10 Ensemble Methods; 3.10.1 General; 3.10.2 Bagging; 3.10.3 Boosting; 3.11 Big P and Small N (P k N); 3.11.1 Bias and Variances; 3.11.2 Multivariate Adaptive Regression Splines (MARS); 3.12 Deep Learning; 3.12.1 General; 3.12.2 Deep Belief Networks; 3.12.2.1 Restricted Boltzmann Machines (RBM) 3.12.2.2 Deep Belief Nets (DBN)3.12.3 Convolutional Neural Networks (CNN); 3.12.4 Granular Computing (Rough Set Theory); 3.12.5 Clustering; 3.12.5.1 Measures of Similarity or Dissimilarity; 3.12.5.2 Hierarchical Methods; 3.12.5.3 Non-Hierarchical Clustering; 3.12.5.4 k-Means Algorithm; 3.12.5.5 Expectation-Maximization (EM) Algorithms; 3.13 Data Stream Processing; 3.13.1 Methods and Analysis; 3.13.2 LogLog Counting; 3.13.3 Count-Min Sketch; 3.13.3.1 Online Support Regression; 3.14 Remarks; References; Chapter 4 Basic Foundations of Big Data; 4.1 Introduction; 4.2 Query 4.3 Taxonomy of Big Data Analytics in Railway Track Engineering4.4 Data Engineering; 4.5 Remarks; References; Chapter 5 Hilbert-Huang Transform, Profile, Signal, and Image Analysis; 5.1 Hilbert-Huang Transform; 5.1.1 Traditional Empirical Mode Decomposition; 5.1.1.1 Side Effect (Boundary Effect); 5.1.1.2 Example; 5.1.1.3 Stopping Criterion; 5.1.2 Ensemble Empirical Mode Decomposition (EEMD); 5.1.2.1 Post-Processing EEMD; 5.1.3 Complex Empirical Mode Decomposition (CEMD); 5.1.4 Spectral Analysis; 5.1.5 Bidimensional Empirical Mode Decomposition (BEMD); 5.1.5.1 Example |
ctrlnum | (OCoLC)1011368969 (DE-599)BVBBV044537192 |
dewey-full | 625.1/4028557 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 625 - Engineering of railroads and roads |
dewey-raw | 625.1/4028557 |
dewey-search | 625.1/4028557 |
dewey-sort | 3625.1 74028557 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Wirtschaftswissenschaften Verkehr / Transport |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05978nmm a2200757 c 4500</leader><controlfield tag="001">BV044537192</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200309 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171013s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119229070</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-119-22907-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119229056</subfield><subfield code="c">PDF</subfield><subfield code="9">978-1-119-22905-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119229063</subfield><subfield code="c">ePub</subfield><subfield code="9">978-1-119-22906-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781119229070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1011368969</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044537192</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TF241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">625.1/4028557</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">625.1/4028557</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Attoh-Okine, Nii O.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data and differential privacy</subfield><subfield code="b">analysis strategies for railway track engineering</subfield><subfield code="c">Nii O. Attoh-Okine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ, USA</subfield><subfield code="b">John Wiley & Sons, Inc.</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 252 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in operations research and management science</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Chapter 1 Introduction; 1.1 General; 1.2 Track Components; 1.3 Characteristics of Railway Track Data; 1.4 Railway Track Engineering Problems; 1.5 Wheel-Rail Interface Data; 1.5.1 Switches and Crossings; 1.6 Geometry Data; 1.7 Track Geometry Degradation Models; 1.7.1 Deterministic Models; 1.7.1.1 Linear Models; 1.7.1.2 Nonlinear Models; 1.7.2 Stochastic Models; 1.7.3 Discussion; 1.8 Rail Defect Data; 1.9 Inspection and Detection Systems; 1.10 Rail Grinding; 1.11 Traditional Data Analysis Techniques; 1.11.1 Emerging Data Analysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.12 RemarksReferences; Chapter 2 Data Analysis -- Basic Overview; 2.1 Introduction; 2.2 Exploratory Data Analysis (EDA); 2.3 Symbolic Data Analysis; 2.3.1 Building Symbolic Data; 2.3.2 Advantages of Symbolic Data; 2.4 Imputation; 2.5 Bayesian Methods and Big Data Analysis; 2.6 Remarks; References; Chapter 3 Machine Learning: A Basic Overview; 3.1 Introduction; 3.2 Supervised Learning; 3.3 Unsupervised Learning; 3.4 Semi-Supervised Learning; 3.5 Reinforcement Learning; 3.6 Data Integration; 3.7 Data Science Ontology; 3.7.1 Kernels; 3.7.1.1 General; 3.7.1.2 Learning Process</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.7.2 Basic Operations with Kernels3.7.3 Different Kernel Types; 3.7.4 Intuitive Example; 3.7.5 Kernel Methods; 3.7.5.1 Support Vector Machines; 3.8 Imbalanced Classification; 3.9 Model Validation; 3.9.1 Receiver Operating Characteristic (ROC) Curves; 3.9.1.1 ROC Curves; 3.10 Ensemble Methods; 3.10.1 General; 3.10.2 Bagging; 3.10.3 Boosting; 3.11 Big P and Small N (P k N); 3.11.1 Bias and Variances; 3.11.2 Multivariate Adaptive Regression Splines (MARS); 3.12 Deep Learning; 3.12.1 General; 3.12.2 Deep Belief Networks; 3.12.2.1 Restricted Boltzmann Machines (RBM)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.12.2.2 Deep Belief Nets (DBN)3.12.3 Convolutional Neural Networks (CNN); 3.12.4 Granular Computing (Rough Set Theory); 3.12.5 Clustering; 3.12.5.1 Measures of Similarity or Dissimilarity; 3.12.5.2 Hierarchical Methods; 3.12.5.3 Non-Hierarchical Clustering; 3.12.5.4 k-Means Algorithm; 3.12.5.5 Expectation-Maximization (EM) Algorithms; 3.13 Data Stream Processing; 3.13.1 Methods and Analysis; 3.13.2 LogLog Counting; 3.13.3 Count-Min Sketch; 3.13.3.1 Online Support Regression; 3.14 Remarks; References; Chapter 4 Basic Foundations of Big Data; 4.1 Introduction; 4.2 Query</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3 Taxonomy of Big Data Analytics in Railway Track Engineering4.4 Data Engineering; 4.5 Remarks; References; Chapter 5 Hilbert-Huang Transform, Profile, Signal, and Image Analysis; 5.1 Hilbert-Huang Transform; 5.1.1 Traditional Empirical Mode Decomposition; 5.1.1.1 Side Effect (Boundary Effect); 5.1.1.2 Example; 5.1.1.3 Stopping Criterion; 5.1.2 Ensemble Empirical Mode Decomposition (EEMD); 5.1.2.1 Post-Processing EEMD; 5.1.3 Complex Empirical Mode Decomposition (CEMD); 5.1.4 Spectral Analysis; 5.1.5 Bidimensional Empirical Mode Decomposition (BEMD); 5.1.5.1 Example</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TECHNOLOGY & ENGINEERING / Engineering (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data protection / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Railroad tracks / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Railroad tracks / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data protection / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eisenbahntechnik</subfield><subfield code="0">(DE-588)4151498-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eisenbahntechnik</subfield><subfield code="0">(DE-588)4151498-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-119-22904-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029936334</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBG_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBT_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBY_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044537192 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:55:18Z |
institution | BVB |
isbn | 9781119229070 9781119229056 9781119229063 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029936334 |
oclc_num | 1011368969 |
open_access_boolean | |
owner | DE-706 DE-861 DE-703 |
owner_facet | DE-706 DE-861 DE-703 |
physical | 1 Online-Ressource (xiii, 252 Seiten) Diagramme |
psigel | ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC UBT_PDA_WIC_Kauf ZDB-35-WIC UBY_PDA_WIC_Kauf |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | John Wiley & Sons, Inc. |
record_format | marc |
series2 | Wiley series in operations research and management science |
spelling | Attoh-Okine, Nii O. Verfasser aut Big data and differential privacy analysis strategies for railway track engineering Nii O. Attoh-Okine Hoboken, NJ, USA John Wiley & Sons, Inc. 2017 1 Online-Ressource (xiii, 252 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Wiley series in operations research and management science Includes bibliographical references and index Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Chapter 1 Introduction; 1.1 General; 1.2 Track Components; 1.3 Characteristics of Railway Track Data; 1.4 Railway Track Engineering Problems; 1.5 Wheel-Rail Interface Data; 1.5.1 Switches and Crossings; 1.6 Geometry Data; 1.7 Track Geometry Degradation Models; 1.7.1 Deterministic Models; 1.7.1.1 Linear Models; 1.7.1.2 Nonlinear Models; 1.7.2 Stochastic Models; 1.7.3 Discussion; 1.8 Rail Defect Data; 1.9 Inspection and Detection Systems; 1.10 Rail Grinding; 1.11 Traditional Data Analysis Techniques; 1.11.1 Emerging Data Analysis 1.12 RemarksReferences; Chapter 2 Data Analysis -- Basic Overview; 2.1 Introduction; 2.2 Exploratory Data Analysis (EDA); 2.3 Symbolic Data Analysis; 2.3.1 Building Symbolic Data; 2.3.2 Advantages of Symbolic Data; 2.4 Imputation; 2.5 Bayesian Methods and Big Data Analysis; 2.6 Remarks; References; Chapter 3 Machine Learning: A Basic Overview; 3.1 Introduction; 3.2 Supervised Learning; 3.3 Unsupervised Learning; 3.4 Semi-Supervised Learning; 3.5 Reinforcement Learning; 3.6 Data Integration; 3.7 Data Science Ontology; 3.7.1 Kernels; 3.7.1.1 General; 3.7.1.2 Learning Process 3.7.2 Basic Operations with Kernels3.7.3 Different Kernel Types; 3.7.4 Intuitive Example; 3.7.5 Kernel Methods; 3.7.5.1 Support Vector Machines; 3.8 Imbalanced Classification; 3.9 Model Validation; 3.9.1 Receiver Operating Characteristic (ROC) Curves; 3.9.1.1 ROC Curves; 3.10 Ensemble Methods; 3.10.1 General; 3.10.2 Bagging; 3.10.3 Boosting; 3.11 Big P and Small N (P k N); 3.11.1 Bias and Variances; 3.11.2 Multivariate Adaptive Regression Splines (MARS); 3.12 Deep Learning; 3.12.1 General; 3.12.2 Deep Belief Networks; 3.12.2.1 Restricted Boltzmann Machines (RBM) 3.12.2.2 Deep Belief Nets (DBN)3.12.3 Convolutional Neural Networks (CNN); 3.12.4 Granular Computing (Rough Set Theory); 3.12.5 Clustering; 3.12.5.1 Measures of Similarity or Dissimilarity; 3.12.5.2 Hierarchical Methods; 3.12.5.3 Non-Hierarchical Clustering; 3.12.5.4 k-Means Algorithm; 3.12.5.5 Expectation-Maximization (EM) Algorithms; 3.13 Data Stream Processing; 3.13.1 Methods and Analysis; 3.13.2 LogLog Counting; 3.13.3 Count-Min Sketch; 3.13.3.1 Online Support Regression; 3.14 Remarks; References; Chapter 4 Basic Foundations of Big Data; 4.1 Introduction; 4.2 Query 4.3 Taxonomy of Big Data Analytics in Railway Track Engineering4.4 Data Engineering; 4.5 Remarks; References; Chapter 5 Hilbert-Huang Transform, Profile, Signal, and Image Analysis; 5.1 Hilbert-Huang Transform; 5.1.1 Traditional Empirical Mode Decomposition; 5.1.1.1 Side Effect (Boundary Effect); 5.1.1.2 Example; 5.1.1.3 Stopping Criterion; 5.1.2 Ensemble Empirical Mode Decomposition (EEMD); 5.1.2.1 Post-Processing EEMD; 5.1.3 Complex Empirical Mode Decomposition (CEMD); 5.1.4 Spectral Analysis; 5.1.5 Bidimensional Empirical Mode Decomposition (BEMD); 5.1.5.1 Example TECHNOLOGY & ENGINEERING / Engineering (General) Big data Data protection / Mathematics Differential equations Railroad tracks / Mathematical models Mathematik Mathematisches Modell Datenanalyse (DE-588)4123037-1 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Eisenbahntechnik (DE-588)4151498-1 gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Big Data (DE-588)4802620-7 s Eisenbahntechnik (DE-588)4151498-1 s Datenanalyse (DE-588)4123037-1 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-119-22904-9 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Attoh-Okine, Nii O. Big data and differential privacy analysis strategies for railway track engineering Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Chapter 1 Introduction; 1.1 General; 1.2 Track Components; 1.3 Characteristics of Railway Track Data; 1.4 Railway Track Engineering Problems; 1.5 Wheel-Rail Interface Data; 1.5.1 Switches and Crossings; 1.6 Geometry Data; 1.7 Track Geometry Degradation Models; 1.7.1 Deterministic Models; 1.7.1.1 Linear Models; 1.7.1.2 Nonlinear Models; 1.7.2 Stochastic Models; 1.7.3 Discussion; 1.8 Rail Defect Data; 1.9 Inspection and Detection Systems; 1.10 Rail Grinding; 1.11 Traditional Data Analysis Techniques; 1.11.1 Emerging Data Analysis 1.12 RemarksReferences; Chapter 2 Data Analysis -- Basic Overview; 2.1 Introduction; 2.2 Exploratory Data Analysis (EDA); 2.3 Symbolic Data Analysis; 2.3.1 Building Symbolic Data; 2.3.2 Advantages of Symbolic Data; 2.4 Imputation; 2.5 Bayesian Methods and Big Data Analysis; 2.6 Remarks; References; Chapter 3 Machine Learning: A Basic Overview; 3.1 Introduction; 3.2 Supervised Learning; 3.3 Unsupervised Learning; 3.4 Semi-Supervised Learning; 3.5 Reinforcement Learning; 3.6 Data Integration; 3.7 Data Science Ontology; 3.7.1 Kernels; 3.7.1.1 General; 3.7.1.2 Learning Process 3.7.2 Basic Operations with Kernels3.7.3 Different Kernel Types; 3.7.4 Intuitive Example; 3.7.5 Kernel Methods; 3.7.5.1 Support Vector Machines; 3.8 Imbalanced Classification; 3.9 Model Validation; 3.9.1 Receiver Operating Characteristic (ROC) Curves; 3.9.1.1 ROC Curves; 3.10 Ensemble Methods; 3.10.1 General; 3.10.2 Bagging; 3.10.3 Boosting; 3.11 Big P and Small N (P k N); 3.11.1 Bias and Variances; 3.11.2 Multivariate Adaptive Regression Splines (MARS); 3.12 Deep Learning; 3.12.1 General; 3.12.2 Deep Belief Networks; 3.12.2.1 Restricted Boltzmann Machines (RBM) 3.12.2.2 Deep Belief Nets (DBN)3.12.3 Convolutional Neural Networks (CNN); 3.12.4 Granular Computing (Rough Set Theory); 3.12.5 Clustering; 3.12.5.1 Measures of Similarity or Dissimilarity; 3.12.5.2 Hierarchical Methods; 3.12.5.3 Non-Hierarchical Clustering; 3.12.5.4 k-Means Algorithm; 3.12.5.5 Expectation-Maximization (EM) Algorithms; 3.13 Data Stream Processing; 3.13.1 Methods and Analysis; 3.13.2 LogLog Counting; 3.13.3 Count-Min Sketch; 3.13.3.1 Online Support Regression; 3.14 Remarks; References; Chapter 4 Basic Foundations of Big Data; 4.1 Introduction; 4.2 Query 4.3 Taxonomy of Big Data Analytics in Railway Track Engineering4.4 Data Engineering; 4.5 Remarks; References; Chapter 5 Hilbert-Huang Transform, Profile, Signal, and Image Analysis; 5.1 Hilbert-Huang Transform; 5.1.1 Traditional Empirical Mode Decomposition; 5.1.1.1 Side Effect (Boundary Effect); 5.1.1.2 Example; 5.1.1.3 Stopping Criterion; 5.1.2 Ensemble Empirical Mode Decomposition (EEMD); 5.1.2.1 Post-Processing EEMD; 5.1.3 Complex Empirical Mode Decomposition (CEMD); 5.1.4 Spectral Analysis; 5.1.5 Bidimensional Empirical Mode Decomposition (BEMD); 5.1.5.1 Example TECHNOLOGY & ENGINEERING / Engineering (General) Big data Data protection / Mathematics Differential equations Railroad tracks / Mathematical models Mathematik Mathematisches Modell Datenanalyse (DE-588)4123037-1 gnd Mathematisches Modell (DE-588)4114528-8 gnd Eisenbahntechnik (DE-588)4151498-1 gnd Big Data (DE-588)4802620-7 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4114528-8 (DE-588)4151498-1 (DE-588)4802620-7 |
title | Big data and differential privacy analysis strategies for railway track engineering |
title_auth | Big data and differential privacy analysis strategies for railway track engineering |
title_exact_search | Big data and differential privacy analysis strategies for railway track engineering |
title_full | Big data and differential privacy analysis strategies for railway track engineering Nii O. Attoh-Okine |
title_fullStr | Big data and differential privacy analysis strategies for railway track engineering Nii O. Attoh-Okine |
title_full_unstemmed | Big data and differential privacy analysis strategies for railway track engineering Nii O. Attoh-Okine |
title_short | Big data and differential privacy |
title_sort | big data and differential privacy analysis strategies for railway track engineering |
title_sub | analysis strategies for railway track engineering |
topic | TECHNOLOGY & ENGINEERING / Engineering (General) Big data Data protection / Mathematics Differential equations Railroad tracks / Mathematical models Mathematik Mathematisches Modell Datenanalyse (DE-588)4123037-1 gnd Mathematisches Modell (DE-588)4114528-8 gnd Eisenbahntechnik (DE-588)4151498-1 gnd Big Data (DE-588)4802620-7 gnd |
topic_facet | TECHNOLOGY & ENGINEERING / Engineering (General) Big data Data protection / Mathematics Differential equations Railroad tracks / Mathematical models Mathematik Mathematisches Modell Datenanalyse Eisenbahntechnik Big Data |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119229070 |
work_keys_str_mv | AT attohokineniio bigdataanddifferentialprivacyanalysisstrategiesforrailwaytrackengineering |