Geometric invariant theory: over the real and complex numbers
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2017]
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XIV, 190 Seiten) |
ISBN: | 9783319659077 |
DOI: | 10.1007/978-3-319-65907-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044529991 | ||
003 | DE-604 | ||
005 | 20220209 | ||
007 | cr|uuu---uuuuu | ||
008 | 171010s2017 |||| o||u| ||||||eng d | ||
020 | |a 9783319659077 |c Online |9 978-3-319-65907-7 | ||
024 | 7 | |a 10.1007/978-3-319-65907-7 |2 doi | |
035 | |a (ZDB-2-SMA)9783319659077 | ||
035 | |a (OCoLC)1005514364 | ||
035 | |a (DE-599)BVBBV044529991 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-523 |a DE-703 |a DE-863 |a DE-20 |a DE-739 |a DE-634 |a DE-862 |a DE-824 |a DE-188 |a DE-83 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Wallach, Nolan R. |d 1940- |e Verfasser |0 (DE-588)133231690 |4 aut | |
245 | 1 | 0 | |a Geometric invariant theory |b over the real and complex numbers |c Nolan R. Wallach |
264 | 1 | |a Cham |b Springer |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a 1 Online-Ressource (XIV, 190 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebraic geometry | |
650 | 4 | |a Group theory | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Invariantentheorie |0 (DE-588)4156712-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Invariantentheorie |0 (DE-588)4156712-2 |D s |
689 | 0 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-65905-3 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-65907-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SEB |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2017 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029929292 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-65907-7 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 658980 |
---|---|
_version_ | 1806182007247470592 |
any_adam_object | |
author | Wallach, Nolan R. 1940- |
author_GND | (DE-588)133231690 |
author_facet | Wallach, Nolan R. 1940- |
author_role | aut |
author_sort | Wallach, Nolan R. 1940- |
author_variant | n r w nr nrw |
building | Verbundindex |
bvnumber | BV044529991 |
classification_rvk | SK 240 SK 260 |
classification_tum | MAT 000 |
collection | ZDB-2-SEB ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783319659077 (OCoLC)1005514364 (DE-599)BVBBV044529991 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-65907-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03068nmm a2200685zc 4500</leader><controlfield tag="001">BV044529991</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220209 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171010s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319659077</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-65907-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-65907-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319659077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005514364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044529991</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wallach, Nolan R.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133231690</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric invariant theory</subfield><subfield code="b">over the real and complex numbers</subfield><subfield code="c">Nolan R. Wallach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 190 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Invariantentheorie</subfield><subfield code="0">(DE-588)4156712-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Invariantentheorie</subfield><subfield code="0">(DE-588)4156712-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-65905-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SEB</subfield><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2017</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029929292</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-65907-7</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044529991 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T12:49:50Z |
institution | BVB |
isbn | 9783319659077 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029929292 |
oclc_num | 1005514364 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-188 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-188 DE-83 |
physical | 1 Online-Ressource (XIV, 190 Seiten) |
psigel | ZDB-2-SEB ZDB-2-SMA ZDB-2-SMA_2017 |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spellingShingle | Wallach, Nolan R. 1940- Geometric invariant theory over the real and complex numbers Mathematics Algebraic geometry Group theory Algebraic Geometry Group Theory and Generalizations Mathematik Lie-Gruppe (DE-588)4035695-4 gnd Geometrische Invariantentheorie (DE-588)4156712-2 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4156712-2 |
title | Geometric invariant theory over the real and complex numbers |
title_auth | Geometric invariant theory over the real and complex numbers |
title_exact_search | Geometric invariant theory over the real and complex numbers |
title_full | Geometric invariant theory over the real and complex numbers Nolan R. Wallach |
title_fullStr | Geometric invariant theory over the real and complex numbers Nolan R. Wallach |
title_full_unstemmed | Geometric invariant theory over the real and complex numbers Nolan R. Wallach |
title_short | Geometric invariant theory |
title_sort | geometric invariant theory over the real and complex numbers |
title_sub | over the real and complex numbers |
topic | Mathematics Algebraic geometry Group theory Algebraic Geometry Group Theory and Generalizations Mathematik Lie-Gruppe (DE-588)4035695-4 gnd Geometrische Invariantentheorie (DE-588)4156712-2 gnd |
topic_facet | Mathematics Algebraic geometry Group theory Algebraic Geometry Group Theory and Generalizations Mathematik Lie-Gruppe Geometrische Invariantentheorie |
url | https://doi.org/10.1007/978-3-319-65907-7 |
work_keys_str_mv | AT wallachnolanr geometricinvarianttheoryovertherealandcomplexnumbers |