Quasi-infinitely divisible distributions and quasi-Lévy measures:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Ulm
2017
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | v, 59 Seiten |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044511516 | ||
003 | DE-604 | ||
005 | 20170927 | ||
007 | t | ||
008 | 170925s2017 m||| 00||| eng d | ||
035 | |a (OCoLC)1002886704 | ||
035 | |a (DE-599)BSZ491515960 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-188 |a DE-29T | ||
100 | 1 | |a Pan, Lei |d 1986- |e Verfasser |0 (DE-588)1137562099 |4 aut | |
245 | 1 | 0 | |a Quasi-infinitely divisible distributions and quasi-Lévy measures |c vorgelegt von Lei Pan |
264 | 1 | |a Ulm |c 2017 | |
300 | |a v, 59 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Universität Ulm |d 2017 | ||
650 | 4 | |a Lévy processes | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 0 | 7 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stetigkeit |0 (DE-588)4183167-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |D s |
689 | 0 | 1 | |a Stetigkeit |0 (DE-588)4183167-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029911288&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029911288 |
Datensatz im Suchindex
_version_ | 1804177848807718912 |
---|---|
adam_text | CONTENTS
ABSTRACT 1
ZUSAMMENFASSUNG IN DEUTSCHER SPRACHE 3
1 INTRODUCTION 5
1.1 PRELIMINARIES AND N O T A T IO N S
....................................................................................
5
1.1.1 INFINITELY DIVISIBLE D ISTR IB U TIO N
S................................................................ 5
1.1.2 LEVY-KHINTCHINE FORMULA OF (QUASI-)INFINITELY DIVISIBLE
DISTRIBUTIONS 6
1.1.3 THE IMPORTANCE OF QUASI-INFINITELY DIVISIBLE D IS TR IB U TIO N S
.................
9
1.1.4 PROPERTIES OF INFINITELY DIVISIBLE DISTRIBUTIONS
........................................
10
1.2 MAIN RESULTS OF THIS T H E S I S
.......................................................................................
12
2 QUASI-LEVY MEASURES AND REMARKS 13
3 EXAMPLES 19
4 CONVERGENCE OF QUASI-INFINITELY DIVISIBLE DISTRIBUTIONS 27
5 SUPPORT PROPERTIES OF QUASI-INFINITELY DIVISIBLE DISTRIBUTIONS 33
6 MOMENTS 37
7 CONTINUITY PROPERTIES 41
8 DISTRIBUTIONS CONCENTRATED ON THE INTEGERS 45
BIBLIOGRAPHY 55
ACKNOWLEDGEMENTS 57
ERKLAERUNG 59
CURRICULUM VITAE 60
|
any_adam_object | 1 |
author | Pan, Lei 1986- |
author_GND | (DE-588)1137562099 |
author_facet | Pan, Lei 1986- |
author_role | aut |
author_sort | Pan, Lei 1986- |
author_variant | l p lp |
building | Verbundindex |
bvnumber | BV044511516 |
ctrlnum | (OCoLC)1002886704 (DE-599)BSZ491515960 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01414nam a2200361 c 4500</leader><controlfield tag="001">BV044511516</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170927 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170925s2017 m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1002886704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ491515960</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pan, Lei</subfield><subfield code="d">1986-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1137562099</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-infinitely divisible distributions and quasi-Lévy measures</subfield><subfield code="c">vorgelegt von Lei Pan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Ulm</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">v, 59 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Universität Ulm</subfield><subfield code="d">2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lévy processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stetigkeit</subfield><subfield code="0">(DE-588)4183167-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stetigkeit</subfield><subfield code="0">(DE-588)4183167-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029911288&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029911288</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV044511516 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:54:36Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029911288 |
oclc_num | 1002886704 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-188 DE-29T |
owner_facet | DE-355 DE-BY-UBR DE-188 DE-29T |
physical | v, 59 Seiten |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
record_format | marc |
spelling | Pan, Lei 1986- Verfasser (DE-588)1137562099 aut Quasi-infinitely divisible distributions and quasi-Lévy measures vorgelegt von Lei Pan Ulm 2017 v, 59 Seiten txt rdacontent n rdamedia nc rdacarrier Dissertation Universität Ulm 2017 Lévy processes Distribution (Probability theory) Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd rswk-swf Stetigkeit (DE-588)4183167-6 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Wahrscheinlichkeitsmaß (DE-588)4137556-7 s Stetigkeit (DE-588)4183167-6 s DE-604 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029911288&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Pan, Lei 1986- Quasi-infinitely divisible distributions and quasi-Lévy measures Lévy processes Distribution (Probability theory) Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd Stetigkeit (DE-588)4183167-6 gnd |
subject_GND | (DE-588)4137556-7 (DE-588)4183167-6 (DE-588)4113937-9 |
title | Quasi-infinitely divisible distributions and quasi-Lévy measures |
title_auth | Quasi-infinitely divisible distributions and quasi-Lévy measures |
title_exact_search | Quasi-infinitely divisible distributions and quasi-Lévy measures |
title_full | Quasi-infinitely divisible distributions and quasi-Lévy measures vorgelegt von Lei Pan |
title_fullStr | Quasi-infinitely divisible distributions and quasi-Lévy measures vorgelegt von Lei Pan |
title_full_unstemmed | Quasi-infinitely divisible distributions and quasi-Lévy measures vorgelegt von Lei Pan |
title_short | Quasi-infinitely divisible distributions and quasi-Lévy measures |
title_sort | quasi infinitely divisible distributions and quasi levy measures |
topic | Lévy processes Distribution (Probability theory) Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd Stetigkeit (DE-588)4183167-6 gnd |
topic_facet | Lévy processes Distribution (Probability theory) Wahrscheinlichkeitsmaß Stetigkeit Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029911288&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT panlei quasiinfinitelydivisibledistributionsandquasilevymeasures |