Practical Bayesian inference: a primer for physical scientists
Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2017
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBM01 Volltext |
Zusammenfassung: | Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how this can be used to fit and compare models in a range of problems. Topics covered include regression, parameter estimation, model assessment, and Monte Carlo methods, as well as widely used classical methods such as regularization and hypothesis testing. The emphasis throughout is on the principles, the unifying probabilistic approach, and showing how the methods can be implemented in practice. R code (with explanations) is included and is available online, so readers can reproduce the plots and results for themselves. Aimed primarily at undergraduate and graduate students, these techniques can be applied to a wide range of data analysis problems beyond the scope of this work |
Beschreibung: | 1 Online-Ressource (ix, 295 Seiten) |
ISBN: | 9781108123891 |
DOI: | 10.1017/9781108123891 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044509596 | ||
003 | DE-604 | ||
005 | 20231212 | ||
007 | cr|uuu---uuuuu | ||
008 | 170921s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781108123891 |9 978-1-108-12389-1 | ||
024 | 7 | |a 10.1017/9781108123891 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108123891 | ||
035 | |a (OCoLC)1005866381 | ||
035 | |a (DE-599)BVBBV044509596 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-19 | ||
082 | 0 | |a 519.5/42 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Bailer-Jones, Coryn A. L. |e Verfasser |0 (DE-588)1126122696 |4 aut | |
245 | 1 | 0 | |a Practical Bayesian inference |b a primer for physical scientists |c Coryn A.L. Bailer-Jones |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2017 | |
300 | |a 1 Online-Ressource (ix, 295 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Probability basics -- Estimation and uncertainty -- Statistical models and inference -- Linear models, least squares, and maximum likelihood -- Parameter estimation: single parameter -- Parameter estimation: multiple parameters -- Approximating distributions -- Monte Carlo methods for inference -- Parameter estimation: Markov Chain Monte Carlo -- Frequentist hypothesis testing -- Model comparison -- Dealing with more complicated problems | |
520 | |a Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how this can be used to fit and compare models in a range of problems. Topics covered include regression, parameter estimation, model assessment, and Monte Carlo methods, as well as widely used classical methods such as regularization and hypothesis testing. The emphasis throughout is on the principles, the unifying probabilistic approach, and showing how the methods can be implemented in practice. R code (with explanations) is included and is available online, so readers can reproduce the plots and results for themselves. Aimed primarily at undergraduate and graduate students, these techniques can be applied to a wide range of data analysis problems beyond the scope of this work | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Bayes-Inferenz |0 (DE-588)4648118-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bayes-Inferenz |0 (DE-588)4648118-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 978-1-107-19211-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, paperback |z 978-1-316-64221-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108123891 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029909425 | ||
966 | e | |u https://doi.org/10.1017/9781108123891 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108123891 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108123891 |l UBM01 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177845695545344 |
---|---|
any_adam_object | |
author | Bailer-Jones, Coryn A. L. |
author_GND | (DE-588)1126122696 |
author_facet | Bailer-Jones, Coryn A. L. |
author_role | aut |
author_sort | Bailer-Jones, Coryn A. L. |
author_variant | c a l b j calb calbj |
building | Verbundindex |
bvnumber | BV044509596 |
classification_rvk | SK 830 SK 950 |
collection | ZDB-20-CBO |
contents | Probability basics -- Estimation and uncertainty -- Statistical models and inference -- Linear models, least squares, and maximum likelihood -- Parameter estimation: single parameter -- Parameter estimation: multiple parameters -- Approximating distributions -- Monte Carlo methods for inference -- Parameter estimation: Markov Chain Monte Carlo -- Frequentist hypothesis testing -- Model comparison -- Dealing with more complicated problems |
ctrlnum | (ZDB-20-CBO)CR9781108123891 (OCoLC)1005866381 (DE-599)BVBBV044509596 |
dewey-full | 519.5/42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/42 |
dewey-search | 519.5/42 |
dewey-sort | 3519.5 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781108123891 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03370nmm a2200493zc 4500</leader><controlfield tag="001">BV044509596</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170921s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108123891</subfield><subfield code="9">978-1-108-12389-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108123891</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108123891</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005866381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044509596</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/42</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bailer-Jones, Coryn A. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1126122696</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical Bayesian inference</subfield><subfield code="b">a primer for physical scientists</subfield><subfield code="c">Coryn A.L. Bailer-Jones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 295 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Probability basics -- Estimation and uncertainty -- Statistical models and inference -- Linear models, least squares, and maximum likelihood -- Parameter estimation: single parameter -- Parameter estimation: multiple parameters -- Approximating distributions -- Monte Carlo methods for inference -- Parameter estimation: Markov Chain Monte Carlo -- Frequentist hypothesis testing -- Model comparison -- Dealing with more complicated problems</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how this can be used to fit and compare models in a range of problems. Topics covered include regression, parameter estimation, model assessment, and Monte Carlo methods, as well as widely used classical methods such as regularization and hypothesis testing. The emphasis throughout is on the principles, the unifying probabilistic approach, and showing how the methods can be implemented in practice. R code (with explanations) is included and is available online, so readers can reproduce the plots and results for themselves. Aimed primarily at undergraduate and graduate students, these techniques can be applied to a wide range of data analysis problems beyond the scope of this work</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Inferenz</subfield><subfield code="0">(DE-588)4648118-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Inferenz</subfield><subfield code="0">(DE-588)4648118-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">978-1-107-19211-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, paperback</subfield><subfield code="z">978-1-316-64221-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108123891</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029909425</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108123891</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108123891</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108123891</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044509596 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:54:33Z |
institution | BVB |
isbn | 9781108123891 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029909425 |
oclc_num | 1005866381 |
open_access_boolean | |
owner | DE-12 DE-92 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-92 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (ix, 295 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO_Kauf ZDB-20-CBO UBM_PDA_CBO_Kauf_2023 |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Bailer-Jones, Coryn A. L. Verfasser (DE-588)1126122696 aut Practical Bayesian inference a primer for physical scientists Coryn A.L. Bailer-Jones Cambridge Cambridge University Press 2017 1 Online-Ressource (ix, 295 Seiten) txt rdacontent c rdamedia cr rdacarrier Probability basics -- Estimation and uncertainty -- Statistical models and inference -- Linear models, least squares, and maximum likelihood -- Parameter estimation: single parameter -- Parameter estimation: multiple parameters -- Approximating distributions -- Monte Carlo methods for inference -- Parameter estimation: Markov Chain Monte Carlo -- Frequentist hypothesis testing -- Model comparison -- Dealing with more complicated problems Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how this can be used to fit and compare models in a range of problems. Topics covered include regression, parameter estimation, model assessment, and Monte Carlo methods, as well as widely used classical methods such as regularization and hypothesis testing. The emphasis throughout is on the principles, the unifying probabilistic approach, and showing how the methods can be implemented in practice. R code (with explanations) is included and is available online, so readers can reproduce the plots and results for themselves. Aimed primarily at undergraduate and graduate students, these techniques can be applied to a wide range of data analysis problems beyond the scope of this work Mathematische Physik Bayesian statistical decision theory Mathematical physics Bayes-Inferenz (DE-588)4648118-7 gnd rswk-swf Bayes-Inferenz (DE-588)4648118-7 s DE-604 Erscheint auch als Druck-Ausgabe, hardback 978-1-107-19211-9 Erscheint auch als Druck-Ausgabe, paperback 978-1-316-64221-4 https://doi.org/10.1017/9781108123891 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Bailer-Jones, Coryn A. L. Practical Bayesian inference a primer for physical scientists Probability basics -- Estimation and uncertainty -- Statistical models and inference -- Linear models, least squares, and maximum likelihood -- Parameter estimation: single parameter -- Parameter estimation: multiple parameters -- Approximating distributions -- Monte Carlo methods for inference -- Parameter estimation: Markov Chain Monte Carlo -- Frequentist hypothesis testing -- Model comparison -- Dealing with more complicated problems Mathematische Physik Bayesian statistical decision theory Mathematical physics Bayes-Inferenz (DE-588)4648118-7 gnd |
subject_GND | (DE-588)4648118-7 |
title | Practical Bayesian inference a primer for physical scientists |
title_auth | Practical Bayesian inference a primer for physical scientists |
title_exact_search | Practical Bayesian inference a primer for physical scientists |
title_full | Practical Bayesian inference a primer for physical scientists Coryn A.L. Bailer-Jones |
title_fullStr | Practical Bayesian inference a primer for physical scientists Coryn A.L. Bailer-Jones |
title_full_unstemmed | Practical Bayesian inference a primer for physical scientists Coryn A.L. Bailer-Jones |
title_short | Practical Bayesian inference |
title_sort | practical bayesian inference a primer for physical scientists |
title_sub | a primer for physical scientists |
topic | Mathematische Physik Bayesian statistical decision theory Mathematical physics Bayes-Inferenz (DE-588)4648118-7 gnd |
topic_facet | Mathematische Physik Bayesian statistical decision theory Mathematical physics Bayes-Inferenz |
url | https://doi.org/10.1017/9781108123891 |
work_keys_str_mv | AT bailerjonescorynal practicalbayesianinferenceaprimerforphysicalscientists |