An introduction to vectors, vector operators and vector analysis:
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration |
Beschreibung: | 1 online resource (xxvi, 520 pages) |
ISBN: | 9781316650578 |
DOI: | 10.1017/9781316650578 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044506712 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170919s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316650578 |9 978-1-316-65057-8 | ||
024 | 7 | |a 10.1017/9781316650578 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316650578 | ||
035 | |a (OCoLC)1005677712 | ||
035 | |a (DE-599)BVBBV044506712 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.5 | |
100 | 1 | |a Joag, Pramod S. |d 1951- |e Verfasser |4 aut | |
245 | 1 | 0 | |a An introduction to vectors, vector operators and vector analysis |c Pramod S. Joag |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xxvi, 520 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Title from publisher's bibliographic system (viewed on 11 Aug 2017) | |
520 | |a Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Vector analysis | |
650 | 4 | |a Mathematical physics | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 978-1-107-15443-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316650578 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029906603 | ||
966 | e | |u https://doi.org/10.1017/9781316650578 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316650578 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177840757800960 |
---|---|
any_adam_object | |
author | Joag, Pramod S. 1951- |
author_facet | Joag, Pramod S. 1951- |
author_role | aut |
author_sort | Joag, Pramod S. 1951- |
author_variant | p s j ps psj |
building | Verbundindex |
bvnumber | BV044506712 |
collection | ZDB-20-CBO |
contents | Title from publisher's bibliographic system (viewed on 11 Aug 2017) |
ctrlnum | (ZDB-20-CBO)CR9781316650578 (OCoLC)1005677712 (DE-599)BVBBV044506712 |
dewey-full | 512/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.5 |
dewey-search | 512/.5 |
dewey-sort | 3512 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781316650578 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02508nmm a2200409zc 4500</leader><controlfield tag="001">BV044506712</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170919s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316650578</subfield><subfield code="9">978-1-316-65057-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316650578</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316650578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005677712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044506712</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.5</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Joag, Pramod S.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to vectors, vector operators and vector analysis</subfield><subfield code="c">Pramod S. Joag</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxvi, 520 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 11 Aug 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">978-1-107-15443-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316650578</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029906603</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316650578</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316650578</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044506712 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:54:28Z |
institution | BVB |
isbn | 9781316650578 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029906603 |
oclc_num | 1005677712 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xxvi, 520 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Joag, Pramod S. 1951- Verfasser aut An introduction to vectors, vector operators and vector analysis Pramod S. Joag Cambridge Cambridge University Press 2016 1 online resource (xxvi, 520 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 11 Aug 2017) Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration Mathematische Physik Vector analysis Mathematical physics Erscheint auch als Druck-Ausgabe, hardback 978-1-107-15443-8 https://doi.org/10.1017/9781316650578 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Joag, Pramod S. 1951- An introduction to vectors, vector operators and vector analysis Title from publisher's bibliographic system (viewed on 11 Aug 2017) Mathematische Physik Vector analysis Mathematical physics |
title | An introduction to vectors, vector operators and vector analysis |
title_auth | An introduction to vectors, vector operators and vector analysis |
title_exact_search | An introduction to vectors, vector operators and vector analysis |
title_full | An introduction to vectors, vector operators and vector analysis Pramod S. Joag |
title_fullStr | An introduction to vectors, vector operators and vector analysis Pramod S. Joag |
title_full_unstemmed | An introduction to vectors, vector operators and vector analysis Pramod S. Joag |
title_short | An introduction to vectors, vector operators and vector analysis |
title_sort | an introduction to vectors vector operators and vector analysis |
topic | Mathematische Physik Vector analysis Mathematical physics |
topic_facet | Mathematische Physik Vector analysis Mathematical physics |
url | https://doi.org/10.1017/9781316650578 |
work_keys_str_mv | AT joagpramods anintroductiontovectorsvectoroperatorsandvectoranalysis |