The probability lifesaver: all the tools you need to understand chance
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton, New Jersey ; Woodstock, Oxfordshire
Princeton University Press
[2017]
|
Schriftenreihe: | A Princeton lifesaver study guide
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxiii, 727 Seiten Illustrationen, Diagramme |
ISBN: | 9780691149547 9780691149554 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044487412 | ||
003 | DE-604 | ||
005 | 20200120 | ||
007 | t | ||
008 | 170914s2017 xxua||| |||| 00||| eng d | ||
010 | |a 016040785 | ||
020 | |a 9780691149547 |c hardcover |9 978-0-691-14954-7 | ||
020 | |a 9780691149554 |c pbk. |9 978-0-691-14955-4 | ||
035 | |a (OCoLC)991853327 | ||
035 | |a (DE-599)BVBBV044487412 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-703 |a DE-20 |a DE-521 |a DE-91G | ||
050 | 0 | |a QA273 | |
082 | 0 | |a 519.2 |2 23 | |
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a MAT 600f |2 stub | ||
100 | 1 | |a Miller, Steven J. |d 1974- |0 (DE-588)173874002 |4 aut | |
245 | 1 | 0 | |a The probability lifesaver |b all the tools you need to understand chance |c Steven J. Miller |
264 | 1 | |a Princeton, New Jersey ; Woodstock, Oxfordshire |b Princeton University Press |c [2017] | |
264 | 0 | |c © 2017 | |
300 | |a xxiii, 727 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a A Princeton lifesaver study guide | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Chance | |
650 | 4 | |a Games of chance (Mathematics) | |
650 | 4 | |a Random variables | |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 0 | 1 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029887450&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029887450 |
Datensatz im Suchindex
_version_ | 1804177829957468160 |
---|---|
adam_text | CONTENTS
9
Note to Readers xv
How to Use This Book xix
I General Theory 1
1 Introduction 3
1.1 Birthday Problem 4
1.1.1 Stating the Problem 4
1.1.2 Solving the Problem 6
1.1.3 Generalizing the Problem and Solution: Efficiencies 11
1.1.4 Numerical Test 14
1.2 From Shooting Hoops to the Geometric Series 16
1.2.1 The Problem and Its Solution 16
1.2.2 Related Problems 21
1.2.3 General Problem Solving Tips 25
1.3 Gambling 27
1.3.1 The 2008 Super Bowl Wager 28
1.3.2 Expected Returns 28
1.3.3 The Value of Hedging 29
1.3.4 Consequences 31
1.4 Summary 31
1.5 Exercises 34
2 Basic Probability Laws 40
2.1 Paradoxes 41
2.2 Set Theory Review 43
2.2.1 Coding Digression 47
2.2.2 Sizes of infinity and Probabilities 48
2.2.3 Open and Closed Sets 50
2.3 Outcome Spaces, Events, and the Axioms of Probability 52
2.4 Axioms of Probability 57
2.5 Basic Probability Rules 59
2.5.1 Law of Total Probability 60
2.5.2 Probabilities of Unions 61
2.5.3 Probabilities of Inclusions 64
2.6 Probability Spaces and a-algebras 65
VI
Contents
2.7 Appendix: Experimentally Finding Formulas 70
2.7.1 Product Rule for Derivatives 71
2.7.2 Probability of a Union 72
2.8 Summary 73
2.9 Exercises 73
3 Counting I: Cards 78
3.1 Factorials and Binomial Coefficients 79
3.1.1 The Factorial Function 79
3.1.2 Binomial Coefficients 82
3.1.3 Summary 87
3.2 Poker 88
3.2.1 Rules 88
3.2.2 Nothing 90
3.2.3 Pair 92
3.2.4 Two Pair 95
3.2.5 Three of a Kind 96
3.2.6 Straights, Flushes, and Straight Flushes 96
3.2.7 Full House and Four of a Kind 97
3.2.8 Practice Poker Hand: I 98
3.2.9 Practice Poker Hand: II 100
3.3 Solitaire 101
3.3.1 Klondike 102
3.3.2 Aces Up 105
3.3.3 FreeCell 107
3.4 Bridge 108
3.4.1 Tic-tac-toe 109
3.4.2 Number of Bridge Deals 111
3.4.3 Trump Splits 117
3.5 Appendix: Coding to Compute Probabilities 120
3.5.1 Trump Split and Code 120
3.5.2 Poker Hand Codes 121
3.6 Summary 124
3.7 Exercises 124
4 Conditional Probability, Independence, and
Bayes’ Theorem 128
4.1 Conditional Probabilities 129
4.1.1 Guessing the Conditional Probability Formula 131
4.1.2 Expected Counts Approach 132
4.1.3 Venn Diagram Approach 133
4.1.4 The Monty Hall Problem 135
4.2 The General Multiplication Rule 136
4.2.1 Statement 136
4.2.2 Poker Example 136
4.2.3 Hat Problem and Error Correcting Codes 138
4.2.4 Advanced Remark: Definition of Conditional Probability 138
4.3 Independence 139
4.4 Bayes’ Theorem 142
Contents · VÜ
4.5 Partitions and the Law of Total Probability 147
4.6 Bayes’Theorem Revisited 150
4.7 Summary 151
4.8 Exercises 152
5 Counting II: Inclusion-Exclusion 156
5.1 Factorial and Binomial Problems 157
5.1.1 “How many” versus “What’s the probability” 157
5.1.2 Choosing Groups 159
5.1.3 Circular Orderings 160
5.1.4 Choosing Ensembles 162
5.2 The Method of Inclusion-Exclusion 163
5.2.1 Special Cases of the Inclusion-Exclusion Principle 164
5.2.2 Statement of the Inclusion-Exclusion Principle 167
5.2.3 Justification of the Inclusion-Exclusion Formula 168
5.2.4 Using Inclusion-Exclusion: Suited Hand 171
5.2.5 The At Least to Exactly Method 173
5.3 Derangements 176
5.3.1 Counting Derangements 176
5.3.2 The Probability of a Derangement 178
5.3.3 Coding Derangement Experiments 178
5.3.4 Applications of Derangements 179
5.4 Summary 181
5.5 Exercises 182
6 Counting III: Advanced Combinatorics 186
6.1 Basic Counting 187
6.1.1 Enumerating Cases: I 187
6.1.2 Enumerating Cases: II 188
6.1.3 Sampling With and Without Replacement 192
6.2 Word Orderings 199
6.2.1 Counting Orderings 200
6.2.2 Multinomial Coefficients 202
6.3 Partitions 205
6.3.1 The Cookie Problem 205
6.3.2 Lotteries 207
6.3.3 Additional Partitions 212
6.4 Summary 214
6.5 Exercises 215
II Introduction to Random Variables 219
7 Introduction to Discrete Random Variables 221
7.1 Discrete Random Variables: Definition 221
7.2 Discrete Random Variables: PDFs 223
7.3 Discrete Random Variables: CDFs 226
Contents
viii
7.4 Summary 233
7.5 Exercises 235
8 Introduction to Continuous Random Variables 238
8.1 Fundamental Theorem of Calculus 239
8.2 PDFs and CDFs: Definitions 241
8.3 PDFs and CDFs: Examples 243
8.4 Probabilities of Singleton Events 248
8.5 Summary 250
8.6 Exercises 250
9 Tools: Expectation 254
9.1 Calculus Motivation 255
9.2 Expected Values and Moments 257
9.3 Mean and Variance 261
9.4 Joint Distributions 265
9.5 Linearity of Expectation 269
9.6 Properties of the Mean and the Variance 274
9.7 Skewness and Kurtosis 279
9.8 Covariances 280
9.9 Summary 281
9.10 Exercises 281
10 Tools: Convolutions and Changing Variables 285
10.1 Convolutions: Definitions and Properties 286
10.2 Convolutions: Die Example 289
10.2.1 Theoretical Calculation 289
10.2.2 Convolution Code 290
10.3 Convolutions of Several Variables 291
10.4 Change of Variable Formula: Statement 294
10.5 Change of Variables Formula: Proof 297
10.6 Appendix: Products and Quotients
of Random Variables 302
10.6.1 Density of a Product 302
10.6.2 Density of a Quotient 303
10.6.3 Example: Quotient of Exponentials 304
10.7 Summary 305
10.8 Exercises 305
11 Tools: Differentiating Identities 309
11.1 Geometric Series Example 310
11.2 Method of Differentiating Identities 313
11.3 Applications to Binomial Random Variables 314
11.4 Applications to Normal Random Variables 317
Contents * IX
11.5 Applications to Exponential
Random Variables 320
11.6 Summary 322
11.7 Exercises 323
III Special Distributions 325
12 Discrete Distributions 327
12.1 The Bernoulli Distribution 328
12.2 The Binomial Distribution 328
12.3 The Multinomial Distribution 332
12.4 The Geometric Distribution 335
12.5 The Negative Binomial Distribution 336
12.6 The Poisson Distribution 340
12.7 The Discrete Uniform Distribution 343
12.8 Exercises 346
13 Continuous Random Variables:
Uniform and Exponential 349
13.1 The Uniform Distribution 349
13.1.1 Mean and Variance 350
13.1.2 Sums of Uniform Random Variables 3 52
13.1.3 Examples 354
13.1.4 Generating Random Numbers Uniformly 356
13.2 The Exponential Distribution 357
13.2.1 Mean and Variance 357
13.2.2 Sums of Exponential Random Variables 361
13.2.3 Examples and Applications of Exponential Random
Variables 364
13.2.4 Generating Random Numbers from
Exponential Distributions 365
13.3 Exercises 367
14 Continuous Random Variables: The Normal Distribution 371
14.1 Determining the Normalization Constant 372
14.2 Mean and Variance 375
14.3 Sums of Normal Random Variables 379
14.3.1 Case 1: fjix = ¡xY = 0 and or£ cry — l 380
14.3.2 Case 2: General jlix, jjly and Gy 383
14.3.3 Sums of Two Normals: Faster Algebra 385
14.4 Generating Random Numbers from
Normal Distributions 386
14.5 Examples and the Central Limit Theorem 392
14.6 Exercises 393
X ·
Contents
15 The Gamma Function and Related Distributions 398
15.1 Existence of r ($) 398
15.2 The Functional Equation of T (s) 400
15.3 The Factorial Function and T (s) 404
15.4 Special Values of T (s) 405
15.5 The Beta Function and the Gamma Function 407
15.5.1 Proof of the Fundamental Relation 408
15.5.2 The Fundamental Relation and T(l/2) 410
15.6 The Normal Distribution and the Gamma Function 411
15.7 Families of Random Variables 412
15.8 Appendix: Cosecant Identity Proofs 413
15.8.1 The Cosecant Identity: First Proof 414
15.8.2 The Cosecant Identity: Second Proof 418
15.8.3 The Cosecant Identity: Special Case s = 1/2 421
15.9 Cauchy Distribution 423
15.10 Exercises 424
16 The Chi-square Distribution 427
16.1 Origin of the Chi-square Distribution 429
16.2 Mean and Variance ofX ~ x2(l) 430
16.3 Chi-square Distributions and Sums of Normal Random
Variables 432
16.3.1 Sums of Squares by Direct Integration 434
16.3.2 Sums of Squares by the Change of Variables Theorem 434
16.3.3 Sums of Squares by Convolution 439
16.3.4 Sums of Chi-square Random Variables 441
16.4 Summary 442
16.5 Exercises 443
IV Limit Theorems 447
17 Inequalities and Laws of Large Numbers 449
17.1 Inequalities 449
17.2 Markov’s Inequality 451
17.3 Chebyshev’s Inequality 453
17.3.1 Statement 453
17.3.2 Proof 455
17.3.3 Normal and Uniform Examples 457
17.3.4 Exponential Example 458
17.4 The Boole and Bonferroni Inequalities 459
17.5 Types of Convergence 461
17.5.1 Convergence in Distribution 461
17.5.2 Convergence in Probability 463
17.5.3 Almost Sure and Sure Convergence 463
17.6 Weak and Strong Laws of Large Numbers 464
17.7 Exercises 465
Contents · XI
18 Stirling’s Formula 469
18Л Stirling’s Formula and Probabilities 471
18.2 Stirling’s Formula and Convergence of Series 473
18.3 From Stirling to the Central Limit Theorem 474
18.4 Integral Test and the Poor Man’s Stirling 478
18.5 Elementary Approaches towards
Stirling’s Formula 482
18.5.1 Dyadic Decompositions 482
18.5.2 Lower Bounds towards Stirling: I 484
18.5.3 Lower Bounds toward Stirling II 486
18.5.4 Lower Bounds towards Stirling: III 487
18.6 Stationary Phase and Stirling 488
18.7 The Central Limit Theorem and Stirling 490
18.8 Exercises 491
19 Generating Functions and Convolutions 494
19.1 Motivation 494
19.2 Definition 496
19.3 Uniqueness and Convergence of
Generating Functions 501
19.4 Convolutions I: Discrete Random Variables 503
19.5 Convolutions II: Continuous Random Variables 507
19.6 Definition and Properties of Moment Generating
Functions 512
19.7 Applications of Moment Generating Functions 520
19.8 Exercises 524
20 Proof of the Central Limit Theorem 527
20.1 Key Ideas of the Proof 527
20.2 Statement of the Central Limit Theorem 529
20.3 Means, Variances, and Standard Deviations 531
20.4 Standardization 533
20.5 Needed Moment Generating Function Results 536
20.6 Special Case: Sums of Poisson
Random Variables 539
20.7 Proof of the CLT for General Sums via MGF 542
20.8 Using the Central Limit Theorem 544
20.9 The Central Limit Theorem and
Monte Carlo Integration 545
20.10 Summary 546
20.11 Exercises 548
21 Fourier Analysis and the Central Limit Theorem 553
21.1 Integral Transforms 554
21.2 Convolutions and Probability Theory 558
Contents
x:i
21.3 Proof of the Central Limit Theorem 562
21.4 Summary 565
21.5 Exerci ses 565
V Additional Topics 567
22 Hypothesis Testing 569
22.1 Z-tests 570
22.1.1 Null and Alternative Hypotheses 570
22.1.2 Significance Levels 571
22.1.3 Test Statistics 573
22.1.4 One-sided versus Two-sided Tests 576
22.2 On /7-values 579
22.2.1 Extraordinary Claims and /7-values 580
22.2.2 Large /;-values 580
22.2.3 Misconceptions about/7-values 581
22.3 On /-tests 583
22.3.1 Estimating the Sample Variance 583
22.3.2 From r-tests to /-tests 584
22.4 Problems with Hypothesis Testing 587
22.4.1 Type I Errors 587
22.4.2 Type U Errors 588
22.4.3 Error Rates and the Justice System 588
22.4.4 Power 590
22.4.5 Effect Size 590
22.5 Chi-square Distributions, Goodness of Fit 590
22.5.1 Chi-square Distributions and Tests of Variance 591
22.5.2 Chi-square Distributions and /-distributions 595
22.5.3 Goodness of Fit for List Data 595
22.6 Two Sample Tests 598
22.6.1 Two-sample z-test: Known Variances 598
22.6.2 Two-sample /-test: Unknown but Same Variances 600
22.6.3 Unknown and Different Variances 602
22.7 Summary 604
22.8 Exercises 605
23 Difference Equations, Markov Processes,
and Probability 607
23.1 From the Fibonacci Numbers to Roulette 607
23.1.1 The Double-plus-one Strategy 607
23.1.2 A Quick Review of the Fibonacci Numbers 609
23.1.3 Recurrence Relations and Probability 610
23.1.4 Discussion and Generalizations 612
23.1.5 Code for Roulette Problem 613
23.2 General Theory of Recurrence Relations 614
23.2.1 Notation 614
23.2.2 The Characteristic Equation 615
Contents · Xi îl
23.2.3 The Initial Conditions 616
23.2.4 Proof that Distinct Roots Imply Invertibility 618
23.3 Markov Processes 620
23.3.1 Recurrence Relations and Population Dynamics 620
23.3.2 General Markov Processes 622
23.4 Summary 622
23.5 Exercises 623
24 The Method of Least Squares 625
24.1 Description of the Problem 625
24.2 Probability and Statistics Review 626
24.3 The Method of Least Squares 628
24.4 Exercises 633
25 Two Famous Problems and Some Coding 636
25.1 The Marriage/Secretary Problem 636
25.1.1 Assumptions and Strategy 636
25.1.2 Probability of Success 638
25.1.3 Coding the Secretary Problem 641
25.2 Monty Hall Problem 642
25.2.1 A Simple Solution 643
25.2.2 An Extreme Case 644
25.2.3 Coding the Monty Hall Problem 644
25.3 Two Random Programs 645
25.3.1 Sampling with and without Replacement 645
25.3.2 Expectation 646
25.4 Exercises 646
Appendix A Proof Techniques 649
A. 1 How to Read a Proof 650
A.2 Proofs by Induction 651
A.2.1 Sums of Integers 653
A.2.2 Divisibility 655
A.2.3 The Binomial Theorem 656
A.2.4 Fibonacci Numbers Modulo 2 657
A.2.5 False Proofs by Induction 659
A.3 Proof by Grouping 660
A.4 Proof by Exploiting Symmetries 661
A.5 Proof by Brute Force 663
A.6 Proof by Comparison or Story 664
A.7 Proof by Contradiction 666
A.8 Proof by Exhaustion (or Divide and Conquer) 668
A.9 Proof by Counterexample 669
A. 10 Proof by Generalizing Example 669
A.l 1 Dirichlet’s Pigeon-Hole Principle 670
A. 12 Proof by Adding Zero or Multiplying by One 671
XiV · Contents
Appendix B Analysis Results 675
B.l The Intermediate and Mean Value Theorems 675
B.2 Interchanging Limits, Derivatives, and Integrals 678
B.2.1 Interchanging Orders: Theorems 678
B.2.2 Interchanging Orders: Examples 679
B.3 Convergence Tests for Series 682
B.4 Big-Oh Notation 685
B.5 The Exponential Function 688
B.6 Proof of the Cauchy-Schwarz Inequality 691
B. 7 Exercises 692
Appendix C Countable and Uncountable Sets 693
C. 1 Sizes of Sets 693
C.2 Countable Sets 695
C.3 Uncountable Sets 698
C.4 Length of the Rationals 700
C.5 Length of the Cantor Set 701
C. 6 Exercises 702
Appendix D Complex Analysis and the Central Limit
Theorem 704
D. l Warnings from Real Analysis 705
D.2 Complex Analysis and Topology Definitions 706
D.3 Complex Analysis and Moment Generating Functions 711
D.4 Exercises 715
Bibliography
Index
717
721
|
any_adam_object | 1 |
author | Miller, Steven J. 1974- |
author_GND | (DE-588)173874002 |
author_facet | Miller, Steven J. 1974- |
author_role | aut |
author_sort | Miller, Steven J. 1974- |
author_variant | s j m sj sjm |
building | Verbundindex |
bvnumber | BV044487412 |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273 |
callnumber-search | QA273 |
callnumber-sort | QA 3273 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 800 |
classification_tum | MAT 600f |
ctrlnum | (OCoLC)991853327 (DE-599)BVBBV044487412 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01908nam a2200481 c 4500</leader><controlfield tag="001">BV044487412</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170914s2017 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016040785</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691149547</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-0-691-14954-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691149554</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-691-14955-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)991853327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044487412</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, Steven J.</subfield><subfield code="d">1974-</subfield><subfield code="0">(DE-588)173874002</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The probability lifesaver</subfield><subfield code="b">all the tools you need to understand chance</subfield><subfield code="c">Steven J. Miller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, New Jersey ; Woodstock, Oxfordshire</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="0"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 727 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Princeton lifesaver study guide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Games of chance (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random variables</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029887450&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029887450</subfield></datafield></record></collection> |
id | DE-604.BV044487412 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:54:18Z |
institution | BVB |
isbn | 9780691149547 9780691149554 |
language | English |
lccn | 016040785 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029887450 |
oclc_num | 991853327 |
open_access_boolean | |
owner | DE-703 DE-20 DE-521 DE-91G DE-BY-TUM |
owner_facet | DE-703 DE-20 DE-521 DE-91G DE-BY-TUM |
physical | xxiii, 727 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Princeton University Press |
record_format | marc |
series2 | A Princeton lifesaver study guide |
spelling | Miller, Steven J. 1974- (DE-588)173874002 aut The probability lifesaver all the tools you need to understand chance Steven J. Miller Princeton, New Jersey ; Woodstock, Oxfordshire Princeton University Press [2017] © 2017 xxiii, 727 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier A Princeton lifesaver study guide Probabilities Chance Games of chance (Mathematics) Random variables Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s Wahrscheinlichkeitstheorie (DE-588)4079013-7 s DE-604 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029887450&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Miller, Steven J. 1974- The probability lifesaver all the tools you need to understand chance Probabilities Chance Games of chance (Mathematics) Random variables Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4064324-4 (DE-588)4079013-7 |
title | The probability lifesaver all the tools you need to understand chance |
title_auth | The probability lifesaver all the tools you need to understand chance |
title_exact_search | The probability lifesaver all the tools you need to understand chance |
title_full | The probability lifesaver all the tools you need to understand chance Steven J. Miller |
title_fullStr | The probability lifesaver all the tools you need to understand chance Steven J. Miller |
title_full_unstemmed | The probability lifesaver all the tools you need to understand chance Steven J. Miller |
title_short | The probability lifesaver |
title_sort | the probability lifesaver all the tools you need to understand chance |
title_sub | all the tools you need to understand chance |
topic | Probabilities Chance Games of chance (Mathematics) Random variables Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Probabilities Chance Games of chance (Mathematics) Random variables Wahrscheinlichkeitsrechnung Wahrscheinlichkeitstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029887450&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT millerstevenj theprobabilitylifesaverallthetoolsyouneedtounderstandchance |