The principles of Newtonian and quantum mechanics: the need for Planck's constant, h
"The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the li...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London [und 7 weitere]
World Scientific
[2017]
|
Ausgabe: | second edition |
Schlagworte: | |
Zusammenfassung: | "The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental physe space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigrous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect"... |
Beschreibung: | Includes bibliographical references (page 377-389) |
Beschreibung: | xxv, 396 Seiten 24 cm |
ISBN: | 9789813200968 9813200960 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044484277 | ||
003 | DE-604 | ||
005 | 20171016 | ||
007 | t | ||
008 | 170912s2017 xxu |||| 00||| eng d | ||
020 | |a 9789813200968 |c hardcover |9 978-981-3200-96-8 | ||
020 | |a 9813200960 |c hardcover |9 981-3200-96-0 | ||
035 | |a (OCoLC)960906887 | ||
035 | |a (DE-599)BVBBV044484277 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-19 |a DE-91G | ||
050 | 0 | |a QC20.7.C3 | |
082 | 0 | |a 530.15/564 |2 23 | |
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
100 | 1 | |a Gosson, Maurice A. de |d 1948- |e Verfasser |0 (DE-588)1024136949 |4 aut | |
245 | 1 | 0 | |a The principles of Newtonian and quantum mechanics |b the need for Planck's constant, h |c M A de Gosson, University of Vienna, Austria ; foreword by Basil Hiley |
250 | |a second edition | ||
264 | 1 | |a New Jersey ; London [und 7 weitere] |b World Scientific |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xxv, 396 Seiten |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references (page 377-389) | ||
520 | |a "The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental physe space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigrous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect"... | ||
650 | 4 | |a Lagrangian functions | |
650 | 4 | |a Maslov index | |
650 | 4 | |a Geometric quantization | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lagrange-Funktion |0 (DE-588)4166459-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanik |0 (DE-588)4038168-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maslov-Index |0 (DE-588)4169023-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mechanik |0 (DE-588)4038168-7 |D s |
689 | 0 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 2 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 3 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lagrange-Funktion |0 (DE-588)4166459-0 |D s |
689 | 1 | 1 | |a Maslov-Index |0 (DE-588)4169023-0 |D s |
689 | 1 | 2 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Hiley, Basil J. |4 wpr | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029884402 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177824470269952 |
---|---|
any_adam_object | |
author | Gosson, Maurice A. de 1948- |
author_GND | (DE-588)1024136949 |
author_facet | Gosson, Maurice A. de 1948- |
author_role | aut |
author_sort | Gosson, Maurice A. de 1948- |
author_variant | m a d g mad madg |
building | Verbundindex |
bvnumber | BV044484277 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.C3 |
callnumber-search | QC20.7.C3 |
callnumber-sort | QC 220.7 C3 |
callnumber-subject | QC - Physics |
classification_rvk | UK 1200 |
ctrlnum | (OCoLC)960906887 (DE-599)BVBBV044484277 |
dewey-full | 530.15/564 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/564 |
dewey-search | 530.15/564 |
dewey-sort | 3530.15 3564 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03482nam a2200625 c 4500</leader><controlfield tag="001">BV044484277</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171016 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170912s2017 xxu |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813200968</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-981-3200-96-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9813200960</subfield><subfield code="c">hardcover</subfield><subfield code="9">981-3200-96-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)960906887</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044484277</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.C3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/564</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gosson, Maurice A. de</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1024136949</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The principles of Newtonian and quantum mechanics</subfield><subfield code="b">the need for Planck's constant, h</subfield><subfield code="c">M A de Gosson, University of Vienna, Austria ; foreword by Basil Hiley</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London [und 7 weitere]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxv, 396 Seiten</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (page 377-389)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental physe space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigrous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect"...</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrangian functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maslov index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric quantization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lagrange-Funktion</subfield><subfield code="0">(DE-588)4166459-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maslov-Index</subfield><subfield code="0">(DE-588)4169023-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lagrange-Funktion</subfield><subfield code="0">(DE-588)4166459-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maslov-Index</subfield><subfield code="0">(DE-588)4169023-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hiley, Basil J.</subfield><subfield code="4">wpr</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029884402</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044484277 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:54:13Z |
institution | BVB |
isbn | 9789813200968 9813200960 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029884402 |
oclc_num | 960906887 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
owner_facet | DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
physical | xxv, 396 Seiten 24 cm |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | World Scientific |
record_format | marc |
spelling | Gosson, Maurice A. de 1948- Verfasser (DE-588)1024136949 aut The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson, University of Vienna, Austria ; foreword by Basil Hiley second edition New Jersey ; London [und 7 weitere] World Scientific [2017] © 2017 xxv, 396 Seiten 24 cm txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references (page 377-389) "The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental physe space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigrous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect"... Lagrangian functions Maslov index Geometric quantization Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Lagrange-Funktion (DE-588)4166459-0 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf Mechanik (DE-588)4038168-7 gnd rswk-swf Maslov-Index (DE-588)4169023-0 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Mechanik (DE-588)4038168-7 s Quantenmechanik (DE-588)4047989-4 s Mathematische Physik (DE-588)4037952-8 s Symplektische Geometrie (DE-588)4194232-2 s 1\p DE-604 Lagrange-Funktion (DE-588)4166459-0 s Maslov-Index (DE-588)4169023-0 s Geometrische Quantisierung (DE-588)4156720-1 s 2\p DE-604 Hiley, Basil J. wpr 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gosson, Maurice A. de 1948- The principles of Newtonian and quantum mechanics the need for Planck's constant, h Lagrangian functions Maslov index Geometric quantization Mathematische Physik (DE-588)4037952-8 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Lagrange-Funktion (DE-588)4166459-0 gnd Symplektische Geometrie (DE-588)4194232-2 gnd Mechanik (DE-588)4038168-7 gnd Maslov-Index (DE-588)4169023-0 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4156720-1 (DE-588)4166459-0 (DE-588)4194232-2 (DE-588)4038168-7 (DE-588)4169023-0 (DE-588)4047989-4 |
title | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_auth | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_exact_search | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_full | The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson, University of Vienna, Austria ; foreword by Basil Hiley |
title_fullStr | The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson, University of Vienna, Austria ; foreword by Basil Hiley |
title_full_unstemmed | The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson, University of Vienna, Austria ; foreword by Basil Hiley |
title_short | The principles of Newtonian and quantum mechanics |
title_sort | the principles of newtonian and quantum mechanics the need for planck s constant h |
title_sub | the need for Planck's constant, h |
topic | Lagrangian functions Maslov index Geometric quantization Mathematische Physik (DE-588)4037952-8 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Lagrange-Funktion (DE-588)4166459-0 gnd Symplektische Geometrie (DE-588)4194232-2 gnd Mechanik (DE-588)4038168-7 gnd Maslov-Index (DE-588)4169023-0 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Lagrangian functions Maslov index Geometric quantization Mathematische Physik Geometrische Quantisierung Lagrange-Funktion Symplektische Geometrie Mechanik Maslov-Index Quantenmechanik |
work_keys_str_mv | AT gossonmauriceade theprinciplesofnewtonianandquantummechanicstheneedforplancksconstanth AT hileybasilj theprinciplesofnewtonianandquantummechanicstheneedforplancksconstanth |