Practical Bayesian inference: a primer for physical scientists
"Science is fundamentally about learning from data, and doing so in the presence of uncertainty. Uncertainty arises inevitably and avoidably in many guises. It comes from noise in our measurements: we cannot measure exactly. It comes from sampling effects: we cannot measure everything. It comes...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom
Cambridge University Press
2017
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Science is fundamentally about learning from data, and doing so in the presence of uncertainty. Uncertainty arises inevitably and avoidably in many guises. It comes from noise in our measurements: we cannot measure exactly. It comes from sampling effects: we cannot measure everything. It comes from complexity: data may be numerous, high dimensional, and correlated, making it difficult to see structures. This book is an introduction to statistical methods for analysing data. It presents the major concepts of probability and statistics as well as the computational tools we need to extract meaning from data in the presence of uncertainty"... |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | ix, 295 Seiten Illustrationen, Diagramme |
ISBN: | 9781107192119 9781316642214 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044481308 | ||
003 | DE-604 | ||
005 | 20170927 | ||
007 | t | ||
008 | 170908s2017 xxka||| |||| 00||| eng d | ||
010 | |a 016059505 | ||
020 | |a 9781107192119 |c hbk. |9 978-1-107-19211-9 | ||
020 | |a 9781316642214 |c pbk. |9 978-1-316-64221-4 | ||
035 | |a (OCoLC)1005928243 | ||
035 | |a (DE-599)BVBBV044481308 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-19 | ||
050 | 0 | |a QC20.7.B38 | |
082 | 0 | |a 519.5/42 |2 23 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Bailer-Jones, Coryn A. L. |e Verfasser |0 (DE-588)1126122696 |4 aut | |
245 | 1 | 0 | |a Practical Bayesian inference |b a primer for physical scientists |c Coryn A.L. Bailer-Jones, Max-Planck-Institute for Astronomy, Heidelberg |
264 | 1 | |a Cambridge, United Kingdom |b Cambridge University Press |c 2017 | |
264 | 4 | |c © 2017 | |
300 | |a ix, 295 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a "Science is fundamentally about learning from data, and doing so in the presence of uncertainty. Uncertainty arises inevitably and avoidably in many guises. It comes from noise in our measurements: we cannot measure exactly. It comes from sampling effects: we cannot measure everything. It comes from complexity: data may be numerous, high dimensional, and correlated, making it difficult to see structures. This book is an introduction to statistical methods for analysing data. It presents the major concepts of probability and statistics as well as the computational tools we need to extract meaning from data in the presence of uncertainty"... | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Bayes-Inferenz |0 (DE-588)4648118-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bayes-Inferenz |0 (DE-588)4648118-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029881499&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029881499 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177819505262592 |
---|---|
adam_text | PRACTICAL BAYESIAN INFERENCE
/ BAILER-JONES, CORYN A. L.YYEAUTHOR
: 2017
TABLE OF CONTENTS / INHALTSVERZEICHNIS
PROBABILITY BASICS
ESTIMATION AND UNCERTAINTY
STATISTICAL MODELS AND INFERENCE
LINEAR MODELS, LEAST SQUARES, AND MAXIMUM LIKELIHOOD
PARAMETER ESTIMATION: SINGLE PARAMETER
PARAMETER ESTIMATION: MULTIPLE PARAMETERS
APPROXIMATING DISTRIBUTIONS
MONTE CARLO METHODS FOR INFERENCE
PARAMETER ESTIMATION: MARKOV CHAIN MONTE CARLO
FREQUENTIST HYPOTHESIS TESTING
MODEL COMPARISON
DEALING WITH MORE COMPLICATED PROBLEMS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Bailer-Jones, Coryn A. L. |
author_GND | (DE-588)1126122696 |
author_facet | Bailer-Jones, Coryn A. L. |
author_role | aut |
author_sort | Bailer-Jones, Coryn A. L. |
author_variant | c a l b j calb calbj |
building | Verbundindex |
bvnumber | BV044481308 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.B38 |
callnumber-search | QC20.7.B38 |
callnumber-sort | QC 220.7 B38 |
callnumber-subject | QC - Physics |
classification_rvk | SK 830 SK 950 |
ctrlnum | (OCoLC)1005928243 (DE-599)BVBBV044481308 |
dewey-full | 519.5/42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/42 |
dewey-search | 519.5/42 |
dewey-sort | 3519.5 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02488nam a2200469 c 4500</leader><controlfield tag="001">BV044481308</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170927 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170908s2017 xxka||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016059505</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107192119</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-107-19211-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316642214</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-316-64221-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005928243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044481308</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.B38</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/42</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bailer-Jones, Coryn A. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1126122696</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical Bayesian inference</subfield><subfield code="b">a primer for physical scientists</subfield><subfield code="c">Coryn A.L. Bailer-Jones, Max-Planck-Institute for Astronomy, Heidelberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 295 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Science is fundamentally about learning from data, and doing so in the presence of uncertainty. Uncertainty arises inevitably and avoidably in many guises. It comes from noise in our measurements: we cannot measure exactly. It comes from sampling effects: we cannot measure everything. It comes from complexity: data may be numerous, high dimensional, and correlated, making it difficult to see structures. This book is an introduction to statistical methods for analysing data. It presents the major concepts of probability and statistics as well as the computational tools we need to extract meaning from data in the presence of uncertainty"...</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Inferenz</subfield><subfield code="0">(DE-588)4648118-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Inferenz</subfield><subfield code="0">(DE-588)4648118-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029881499&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029881499</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044481308 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:54:08Z |
institution | BVB |
isbn | 9781107192119 9781316642214 |
language | English |
lccn | 016059505 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029881499 |
oclc_num | 1005928243 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | ix, 295 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Bailer-Jones, Coryn A. L. Verfasser (DE-588)1126122696 aut Practical Bayesian inference a primer for physical scientists Coryn A.L. Bailer-Jones, Max-Planck-Institute for Astronomy, Heidelberg Cambridge, United Kingdom Cambridge University Press 2017 © 2017 ix, 295 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index "Science is fundamentally about learning from data, and doing so in the presence of uncertainty. Uncertainty arises inevitably and avoidably in many guises. It comes from noise in our measurements: we cannot measure exactly. It comes from sampling effects: we cannot measure everything. It comes from complexity: data may be numerous, high dimensional, and correlated, making it difficult to see structures. This book is an introduction to statistical methods for analysing data. It presents the major concepts of probability and statistics as well as the computational tools we need to extract meaning from data in the presence of uncertainty"... Mathematische Physik Bayesian statistical decision theory Mathematical physics Bayes-Inferenz (DE-588)4648118-7 gnd rswk-swf Bayes-Inferenz (DE-588)4648118-7 s 1\p DE-604 LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029881499&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bailer-Jones, Coryn A. L. Practical Bayesian inference a primer for physical scientists Mathematische Physik Bayesian statistical decision theory Mathematical physics Bayes-Inferenz (DE-588)4648118-7 gnd |
subject_GND | (DE-588)4648118-7 |
title | Practical Bayesian inference a primer for physical scientists |
title_auth | Practical Bayesian inference a primer for physical scientists |
title_exact_search | Practical Bayesian inference a primer for physical scientists |
title_full | Practical Bayesian inference a primer for physical scientists Coryn A.L. Bailer-Jones, Max-Planck-Institute for Astronomy, Heidelberg |
title_fullStr | Practical Bayesian inference a primer for physical scientists Coryn A.L. Bailer-Jones, Max-Planck-Institute for Astronomy, Heidelberg |
title_full_unstemmed | Practical Bayesian inference a primer for physical scientists Coryn A.L. Bailer-Jones, Max-Planck-Institute for Astronomy, Heidelberg |
title_short | Practical Bayesian inference |
title_sort | practical bayesian inference a primer for physical scientists |
title_sub | a primer for physical scientists |
topic | Mathematische Physik Bayesian statistical decision theory Mathematical physics Bayes-Inferenz (DE-588)4648118-7 gnd |
topic_facet | Mathematische Physik Bayesian statistical decision theory Mathematical physics Bayes-Inferenz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029881499&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bailerjonescorynal practicalbayesianinferenceaprimerforphysicalscientists |