Linear algebra: a course for physicists and engineers
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2017]
|
Schriftenreihe: | De Gruyter Textbook
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext Inhaltsverzeichnis |
Beschreibung: | Erscheint als Open Access bei De Gruyter |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783110562507 9783110562590 |
DOI: | 10.1515/9783110562507 |
Internformat
MARC
LEADER | 00000nmm a22000008c 4500 | ||
---|---|---|---|
001 | BV044446824 | ||
003 | DE-604 | ||
005 | 20180221 | ||
007 | cr|uuu---uuuuu | ||
008 | 170811s2017 gw |||| o||u| ||||||eng d | ||
015 | |a 17,N30 |2 dnb | ||
016 | 7 | |a 1136877177 |2 DE-101 | |
020 | |a 9783110562507 |c Online, PDF |9 978-3-11-056250-7 | ||
020 | |a 9783110562590 |c Online, EPUB |9 978-3-11-056259-0 | ||
024 | 7 | |a 10.1515/9783110562507 |2 doi | |
035 | |a (ZDB-94-OAB)DOAB25453 | ||
035 | |a (OCoLC)995171199 | ||
035 | |a (DE-599)DNB1136877177 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-B1533 |a DE-M100 |a DE-12 |a DE-634 |a DE-210 |a DE-1052 |a DE-521 |a DE-1102 |a DE-1046 |a DE-1047 |a DE-1028 |a DE-Aug4 |a DE-1050 |a DE-573 |a DE-M347 |a DE-92 |a DE-1051 |a DE-898 |a DE-859 |a DE-860 |a DE-1049 |a DE-863 |a DE-862 |a DE-523 |a DE-Re13 |a DE-Y3 |a DE-255 |a DE-Y7 |a DE-Y2 |a DE-70 |a DE-2174 |a DE-127 |a DE-22 |a DE-155 |a DE-150 |a DE-154 |a DE-91 |a DE-384 |a DE-473 |a DE-19 |a DE-355 |a DE-703 |a DE-20 |a DE-706 |a DE-824 |a DE-29 |a DE-29T |a DE-739 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Mathai, Arakaparampil M. |d 1935- |e Verfasser |0 (DE-588)141316241 |4 aut | |
245 | 1 | 0 | |a Linear algebra |b a course for physicists and engineers |c Arak M. Mathai and Hans J. Haubold |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Textbook | |
500 | |a Erscheint als Open Access bei De Gruyter | ||
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
653 | |a Lineare Algebra | ||
653 | |a Eigenvektor | ||
653 | |a Matrix | ||
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Haubold, Hans J. |d 1951- |e Verfasser |0 (DE-588)136316190 |4 aut | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, paperback |z 978-3-11-056235-4 |
856 | 4 | 0 | |u https://www.doabooks.org/doab?func=fulltext&uiLanguage=en&rid=25453 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110562507 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://www.degruyter.com/view/product/495839 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029847849&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-23-DGG |a ZDB-94-OAB |a ZDB-23-GOA |a ZDB-4-EOAC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029847849 |
Datensatz im Suchindex
DE-BY-FWS_katkey | 661111 |
---|---|
_version_ | 1813306005565472768 |
adam_text |
CONTENTS
PREFACE * IX
ACKNOWLEDGEMENT * XI
LIST OF SYMBOLS * XVII
1 VECTORS * 1
1.0 INTRODUCTION * 1
1.1 VECTORS AS ORDERED SETS * 1
1.2 GEOMETRY OF VECTORS * 14
1.2.1 GEOMETRY OF SCALAR MULTIPLICATION * 14
1.2.2 GEOMETRY OF ADDITION OF VECTORS * 14
1.2.3 A COORDINATE-FREE DEFINITION OF VECTORS * 15
1.2.4 GEOMETRY OF DOT PRODUCTS * 16
1.2.5 CAUCHY-SCHWARTZ INEQUALITY * 17
1.2.6 ORTHOGONAL AND ORTHONORMAL VECTORS * 19
1.2.7 PROJECTIONS * 21
1.2.8 WORK DONE * 24
1.3 LINEAR DEPENDENCE AND LINEAR INDEPENDENCE OF VECTORS * 28
1.3.1 A VECTOR SUBSPACE
-----
38
1.3.2 GRAM-SCHMIDT ORTHOGONALIZATION PROCESS * 42
1.4 SOME APPLICATIONS * 48
1.4.1 PARTIAL DIFFERENTIAL OPERATORS * 48
1.4.2 MAXIMA/MINIMA OF A SCALAR FUNCTION OF MANY REAL SCALAR VARIABLES
1.4.3 DERIVATIVES OF LINEAR AND QUADRATIC FORMS * 50
1.4.4 MODEL BUILDING
-----
52
2 MATRICES * 59
2.0 INTRODUCTION * 59
2.1 VARIOUS DEFINITIONS * 60
2.1.1 SOME MORE PRACTICAL SITUATIONS * 75
2.2 MORE PROPERTIES OF MATRICES * 81
2.2.1 SOME MORE PRACTICAL SITUATIONS * 87
2.2.2 PRE AND POST MULTIPLICATIONS BY DIAGONAL MATRICES * 95
2.3 ELEMENTARY MATRICES AND ELEMENTARY OPERATIONS * 100
2.3.1 PREMULTIPLICATION OF A MATRIX BY ELEMENTARY MATRICES * 102
2.3.2 REDUCTION OF A SQUARE MATRIX INTO A DIAGONAL FORM * 111
2.3.3 SOLVING A SYSTEM OF LINEAR EQUATIONS * 113
2.4 INVERSE, LINEAR INDEPENDENCE AND RANKS
-----
121
2.4.1 INVERSE OF A MATRIX BY ELEMENTARY OPERATIONS * 121
2.4.2 CHECKING LINEAR INDEPENDENCE THROUGH ELEMENTARY OPERATIONS * 124
2.5 ROW AND COLUMN SUBSPACES AND NULL SPACES
-----
128
2.5.1 THE ROW AND COLUMN SUBSPACES
-----
129
2.5.2 CONSISTENCY OF A SYSTEM OF LINEAR EQUATIONS * 133
2.6 PERMUTATIONS AND ELEMENTARY OPERATIONS ON THE RIGHT * 138
2.6.1 PERMUTATIONS * 138
2.6.2 POSTMULTIPLICATIONS BY ELEMENTARY MATRICES * 138
2.6.3 REDUCTION OF QUADRATIC FORMS TO THEIR CANONICAL FORMS * 145
2.6.4 ROTATIONS
-----
147
2.6.5 LINEAR TRANSFORMATIONS * 148
2.6.6 ORTHOGONAL BASES FOR A VECTOR SUBSPACE * 152
2.6.7 A VECTOR SUBSPACE, A MORE GENERAL DEFINITION * 154
2.6.8 A LINEAR TRANSFORMATION, A MORE GENERAL DEFINITION * 156
2.7 PARTITIONING OF MATRICES * 160
2.7.1 PARTITIONING AND PRODUCTS
-----
161
2.7.2 PARTITIONING OF QUADRATIC FORMS * 164
2.7.3 PARTITIONING OF BILINEAR FORMS * 165
2.7.4 INVERSES OF PARTITIONED MATRICES * 166
2.7.5 REGRESSION ANALYSIS
-----
170
2.7.6 DESIGN OF EXPERIMENTS * 172
3 DETERMINANTS * 181
3.0 INTRODUCTION
-----
181
3.1 DEFINITION OF THE DETERMINANT OF A SQUARE MATRIX * 181
3.1.1 SOME GENERAL PROPERTIES * 183
3.1.2 A MECHANICAL WAY OF EVALUATING A 3 X 3 DETERMINANT * 189
3.1.3 DIAGONAL AND TRIANGULAR BLOCK MATRICES
-----
195
3.2 COFACTOR EXPANSIONS * 203
3.2.1 COFACTORS AND MINORS * 203
3.2.2 INVERSE OF A MATRIX IN TERMS OF THE COFACTOR MATRIX * 208
3.2.3 A MATRIX DIFFERENTIAL OPERATOR * 211
3.2.4 PRODUCTS AND SQUARE ROOTS * 215
3.2.5 CRAMER*S RULE FOR SOLVING SYSTEMS OF LINEAR EQUATIONS * 216
3.3 SOME PRACTICAL SITUATIONS
------
223
3.3.1 CROSS PRODUCT
-----
223
3.3.2 AREAS AND VOLUMES
-----
225
3.3.3 JACOBIANS OF TRANSFORMATIONS * 229
3.3.4 FUNCTIONS OF MATRIX ARGUMENT * 239
3.3.5 PARTITIONED DETERMINANTS AND MULTIPLE CORRELATION COEFFICIENT
-----
241
3.3.6 MAXIMA/MINIMA PROBLEMS * 245
4
4.0
4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.4
4.4.1
4.4.2
4.4.3
5
5.0
5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.4.2
5.5
5.5.1
5.5.2
EIGENVALUES AND EIGENVECTORS * 253
INTRODUCTION
-----
253
EIGENVALUES OF SPECIAL MATRICES * 253
EIGENVECTORS
-----
260
SOME DEFINITIONS AND EXAMPLES
-----
260
EIGENVALUES OF POWERS OF A MATRIX
-----
267
EIGENVALUES AND EIGENVECTORS OF REAL SYMMETRIC MATRICES * 269
SOME PROPERTIES OF COMPLEX NUMBERS AND MATRICES IN THE COMPLEX
FIELDS
-----
280
COMPLEX NUMBERS * 280
GEOMETRY OF COMPLEX NUMBERS
-----
281
ALGEBRA OF COMPLEX NUMBERS
-----
283
N-TH ROOTS OF UNITY
-----
286
VECTORS WITH COMPLEX ELEMENTS * 289
MATRICES WITH COMPLEX ELEMENTS
-----
291
MORE PROPERTIES OF MATRICES IN THE COMPLEX FIELD
-----
298
EIGENVALUES OF SYMMETRIC AND HERMITIAN MATRICES * 298
DEFINITENESS OF MATRICES
-----
307
COMMUTATIVE MATRICES * 310
SOME APPLICATIONS OF MATRICES AND DETERMINANTS * 325
INTRODUCTION
-----
325
DIFFERENCE AND DIFFERENTIAL EQUATIONS
-----
325
FIBONACCI SEQUENCE AND DIFFERENCE EQUATIONS
-----
325
POPULATION GROWTH
-----
331
DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS
-----
332
JACOBIANS OF MATRIX TRANSFORMATIONS AND FUNCTIONS OF MATRIX
ARGUMENT
-----
341
JACOBIANS OF MATRIX TRANSFORMATIONS * 342
FUNCTIONS OF MATRIX ARGUMENT
-----
348
SOME TOPICS FROM STATISTICS
-----
354
PRINCIPAL COMPONENTS ANALYSIS
-----
354
REGRESSION ANALYSIS AND MODEL BUILDING
-----
358
DESIGN TYPE MODELS
-----
362
CANONICAL CORRELATION ANALYSIS
-----
364
PROBABILITY MEASURES AND MARKOV PROCESSES * 371
INVARIANCE OF PROBABILITY MEASURES
-----
372
DISCRETE TIME MARKOV PROCESSES AND TRANSITION PROBABILITIES
-----
374
MAXIMA/MINIMA PROBLEMS
-----
381
TAYLOR SERIES
-----
382
OPTIMIZATION OF QUADRATIC FORMS
-----
387
5.5.3 OPTIMIZATION OF A QUADRATIC FORM WITH QUADRATIC FORM
CONSTRAINTS * 389
5.5.4 OPTIMIZATION OFA QUADRATIC FORM WITH LINEAR CONSTRAINTS * 390
5.5.5 OPTIMIZATION OF BILINEAR FORMS WITH QUADRATIC CONSTRAINTS * 392
5.6 LINEAR PROGRAMMING AND NONLINEAR LEAST SQUARES * 398
5.6.1 THE SIMPLEX METHOD * 400
5.6.2 NONLINEAR LEAST SQUARES * 406
5.6.3 MARQUARDT*S METHOD* 408
5.6.4 MATHAI-KATIYAR PROCEDURE * 410
5.7 A LIST OF SOME MORE PROBLEMS FROM PHYSICAL, ENGINEERING AND SOCIAL
SCIENCES * 411
5.7.1 TURBULENT FLOW OFA VISCOUS FLUID * 411
5.7.2 COMPRESSIBLE FLOW OF VISCOUS FLUIDS * 412
5.7.3 HEAT LOSS IN A STEEL ROD * 412
5.7.4 SMALL OSCILLATIONS
-----
413
5.7.5 INPUT-OUTPUT ANALYSIS * 414
6 MATRIX SERIES AND ADDITIONAL PROPERTIES OF MATRICES * - 417
6.0 INTRODUCTION * 417
6.1 MATRIX POLYNOMIALS * 417
6.1.1 LAGRANGE INTERPOLATING POLYNOMIAL * 418
6.1.2 A SPECTRAL DECOMPOSITION OF A MATRIX * 420
6.1.3 AN APPLICATION IN STATISTICS * 422
6.2 MATRIX SEQUENCES AND MATRIX SERIES * 424
6.2.1 MATRIX SEQUENCES * 424
6.2.2 MATRIX SERIES
-----
426
6.2.3 MATRIX HYPERGEOMETRIC SERIES * 429
6.2.4 THE NORM OF A MATRIX * 430
6.2.5 COMPATIBLE NORMS * 434
6.2.6 MATRIX POWER SERIES AND RATE OF CONVERGENCE * 435
6.2.7 AN APPLICATION IN STATISTICS * 435
6.3 SINGULAR VALUE DECOMPOSITION OFA MATRIX * 438
6.3.1 A SINGULAR VALUE DECOMPOSITION * 440
6.3.2 CANONICAL FORM OFA BILINEAR FORM * 443
REFERENCES * 447
INDEX * 449 |
any_adam_object | 1 |
author | Mathai, Arakaparampil M. 1935- Haubold, Hans J. 1951- |
author_GND | (DE-588)141316241 (DE-588)136316190 |
author_facet | Mathai, Arakaparampil M. 1935- Haubold, Hans J. 1951- |
author_role | aut aut |
author_sort | Mathai, Arakaparampil M. 1935- |
author_variant | a m m am amm h j h hj hjh |
building | Verbundindex |
bvnumber | BV044446824 |
classification_rvk | SK 220 |
collection | ZDB-23-DGG ZDB-94-OAB ZDB-23-GOA ZDB-4-EOAC |
ctrlnum | (ZDB-94-OAB)DOAB25453 (OCoLC)995171199 (DE-599)DNB1136877177 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110562507 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000008c 4500</leader><controlfield tag="001">BV044446824</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180221</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170811s2017 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">17,N30</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1136877177</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110562507</subfield><subfield code="c">Online, PDF</subfield><subfield code="9">978-3-11-056250-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110562590</subfield><subfield code="c">Online, EPUB</subfield><subfield code="9">978-3-11-056259-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110562507</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-94-OAB)DOAB25453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)995171199</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1136877177</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-B1533</subfield><subfield code="a">DE-M100</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-1052</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-Y3</subfield><subfield code="a">DE-255</subfield><subfield code="a">DE-Y7</subfield><subfield code="a">DE-Y2</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-2174</subfield><subfield code="a">DE-127</subfield><subfield code="a">DE-22</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-150</subfield><subfield code="a">DE-154</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mathai, Arakaparampil M.</subfield><subfield code="d">1935-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141316241</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear algebra</subfield><subfield code="b">a course for physicists and engineers</subfield><subfield code="c">Arak M. Mathai and Hans J. Haubold</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Textbook</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Erscheint als Open Access bei De Gruyter</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lineare Algebra</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Eigenvektor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Matrix</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haubold, Hans J.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136316190</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, paperback</subfield><subfield code="z">978-3-11-056235-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.doabooks.org/doab?func=fulltext&uiLanguage=en&rid=25453</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110562507</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.degruyter.com/view/product/495839</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029847849&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-94-OAB</subfield><subfield code="a">ZDB-23-GOA</subfield><subfield code="a">ZDB-4-EOAC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029847849</subfield></datafield></record></collection> |
id | DE-604.BV044446824 |
illustrated | Not Illustrated |
indexdate | 2024-10-19T04:02:45Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110562507 9783110562590 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029847849 |
oclc_num | 995171199 |
open_access_boolean | 1 |
owner | DE-B1533 DE-M100 DE-12 DE-634 DE-210 DE-1052 DE-521 DE-1102 DE-1046 DE-1047 DE-1028 DE-Aug4 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-523 DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-150 DE-154 DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-29T DE-739 |
owner_facet | DE-B1533 DE-M100 DE-12 DE-634 DE-210 DE-1052 DE-521 DE-1102 DE-1046 DE-1047 DE-1028 DE-Aug4 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-523 DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-150 DE-154 DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-29T DE-739 |
physical | 1 Online-Ressource |
psigel | ZDB-23-DGG ZDB-94-OAB ZDB-23-GOA ZDB-4-EOAC |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Textbook |
spellingShingle | Mathai, Arakaparampil M. 1935- Haubold, Hans J. 1951- Linear algebra a course for physicists and engineers Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4035811-2 |
title | Linear algebra a course for physicists and engineers |
title_auth | Linear algebra a course for physicists and engineers |
title_exact_search | Linear algebra a course for physicists and engineers |
title_full | Linear algebra a course for physicists and engineers Arak M. Mathai and Hans J. Haubold |
title_fullStr | Linear algebra a course for physicists and engineers Arak M. Mathai and Hans J. Haubold |
title_full_unstemmed | Linear algebra a course for physicists and engineers Arak M. Mathai and Hans J. Haubold |
title_short | Linear algebra |
title_sort | linear algebra a course for physicists and engineers |
title_sub | a course for physicists and engineers |
topic | Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Lineare Algebra |
url | https://www.doabooks.org/doab?func=fulltext&uiLanguage=en&rid=25453 https://doi.org/10.1515/9783110562507 https://www.degruyter.com/view/product/495839 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029847849&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mathaiarakaparampilm linearalgebraacourseforphysicistsandengineers AT hauboldhansj linearalgebraacourseforphysicistsandengineers AT walterdegruytergmbhcokg linearalgebraacourseforphysicistsandengineers |