Electrocatalysts for low temperature fuel cells: fundamentals and recent trends
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH Verlag GmbH & Co. KGaA
[2017]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxv, 588 Seiten Illustrationen, Diagramme |
ISBN: | 9783527341320 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044429534 | ||
003 | DE-604 | ||
005 | 20180126 | ||
007 | t | ||
008 | 170728s2017 gw a||| |||| 00||| eng d | ||
016 | 7 | |a 1123661707 |2 DE-101 | |
020 | |a 9783527341320 |c hbk. |9 978-3-527-34132-0 | ||
035 | |a (OCoLC)1002228379 | ||
035 | |a (DE-599)DNB1123661707 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-11 |a DE-703 |a DE-29T | ||
082 | 0 | |a 540 |2 23 | |
084 | |a VE 7040 |0 (DE-625)147136:253 |2 rvk | ||
084 | |a VN 6050 |0 (DE-625)147593:253 |2 rvk | ||
084 | |a VN 7340 |0 (DE-625)147619:253 |2 rvk | ||
084 | |a ZN 8750 |0 (DE-625)157645: |2 rvk | ||
245 | 1 | 0 | |a Electrocatalysts for low temperature fuel cells |b fundamentals and recent trends |c edited by Thandavarayan Maiyalagan and Viswanathan S. Saji |
264 | 1 | |a Weinheim |b Wiley-VCH Verlag GmbH & Co. KGaA |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xxv, 588 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Niedertemperaturbrennstoffzelle |0 (DE-588)4325119-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrokatalyse |0 (DE-588)4151819-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Brennstoffzelle |0 (DE-588)4008195-3 |2 gnd |9 rswk-swf |
653 | |a Batterien u. Brennstoffzellen | ||
653 | |a Batteries & Fuel Cells | ||
653 | |a Brennstoffzelle | ||
653 | |a Catalysis | ||
653 | |a Chemie | ||
653 | |a Chemistry | ||
653 | |a Elektrokatalysator | ||
653 | |a Elektrokatalyse | ||
653 | |a Heterogene Katalyse | ||
653 | |a Katalyse | ||
653 | |a Materialien f. Energiesysteme | ||
653 | |a Materials Science | ||
653 | |a Materials for Energy Systems | ||
653 | |a Materialwissenschaften | ||
689 | 0 | 0 | |a Niedertemperaturbrennstoffzelle |0 (DE-588)4325119-5 |D s |
689 | 0 | 1 | |a Elektrokatalyse |0 (DE-588)4151819-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Brennstoffzelle |0 (DE-588)4008195-3 |D s |
689 | 1 | 1 | |a Elektrokatalyse |0 (DE-588)4151819-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Maiyalagan, Thandavarayan |0 (DE-588)1137387831 |4 edt | |
700 | 1 | |a Saji, Viswanathan S. |0 (DE-588)113738817X |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, ePDF |z 978-3-527-80389-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, ePub |z 978-3-527-80386-6 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, Mobi |z 978-3-527-80388-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, oBook |z 978-3-527-80387-3 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029830959&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029830959 |
Datensatz im Suchindex
_version_ | 1804177730210627584 |
---|---|
adam_text | CONTENTS
LIST OF CONTRIBUTORS XVII
PREFACE XXIII
1 PRINCIPLE OF LOW-TEMPERATURE FUEL CELLS USING AN IONIC MEMBRANE 1
CLAUDE LAMY
1.1 INTRODUCTION 1
1.2 THERMODYNAMIC DATA AND THEORETICAL ENERGY EFFICIENCY UNDER
EQUILIBRIUM (/ = 0) 2
1.2.1 HYDROGEN/OXYGEN FUEL CELL 2
1.2.2 DIRECT ALCOHOL FUEL CELL 5
1.3 ELECTROCATALYSIS AND THE RATE OF ELECTROCHEMICAL REACTIONS 8
1.3.1 ESTABLISHMENT OF THE BUTLER-VOLMER LAW (CHARGE TRANSFER
OVERPOTENTIAL) 9
1.3.2 MASS TRANSFER LIMITATIONS (CONCENTRATION OVERPOTENTIAL) 11
1.3.3 CELL VOLTAGE VERSUS CURRENT DENSITY CURVES 13
1.3.4 ENERGY EFFICIENCY UNDER WORKING CONDITIONS (J 0) 15
1.3.4.1 HYDROGEN/OXYGEN FUEL CELL 15
1.3.4.2 DIRECT ETHANOL FUEL CELL 15
1.4 INFLUENCE OF THE PROPERTIES OF THE PEMFC COMPONENTS (ELECTRODE
CATALYST STRUCTURE, MEMBRANE RESISTANCE, AND MASS TRANSFER
LIMITATIONS) ON THE POLARIZATION CURVES 16
1.4.1 INFLUENCE OF THE CATALYTIC PROPERTIES OF ELECTRODES 17
1.4.2 INFLUENCE OF THE MEMBRANE-SPECIFIC RESISTANCE 17
1.4.3 INFLUENCE OF THE MASS TRANSFER LIMITATIONS 18
1.5 REPRESENTATIVE EXAMPLES OF LOW-TEMPERATURE FUEL CELLS 19
1.5.1 DIRECT METHANOL FUEL CELL FOR PORTABLE ELECTRONICS 19
1.5.2 HYDROGEN/AIR PEMFC FOR THE ELECTRICAL VEHICLE 25
1.6 CONCLUSIONS AND OUTLOOK 30
ACKNOWLEDGMENTS 31
REFERENCES 31
2 RESEARCH ADVANCEMENTS IN LOW-TEMPERATURE FUEL CELLS 35
N. RAJALAKSHMI, R. IMRAN JAFRI, AND K.S. DHATHATHREYAN
2.1 INTRODUCTION 35
2.2 PROTON EXCHANGE MEMBRANE FUEL CELLS 38
2.2.1 CURRENT SCENARIO 41
2.2.2 IDEAL PROPERTIES FOR ELECTROCATALYST, CATALYST SUPPORT, AND
CURRENT
COLLECTORS FOR MARKET ENTRY 43
2.2.3 ROLE OF NANOMATERIALS IN BRINGING DOWN PT LOADING 44
2.2.4 TYPES OF CATALYST SUPPORTS (ACTIVATED CARBON, CNT, GRAPHENE, ETC.)
44
2.2.5 NON-PT-BASED CATALYSTS 46
2.2.6 CATALYST CORROSION AND FUEL CELL LIFE (PROTOCOLS FOR TESTING) 46
2.2.7 TYPE OF FUELS (ALCOHOLS) 46
2.3 ALKALINE FUEL CELLS 50
2.3.1 FUELS FOR ALKALINE MEMBRANE FUEL CELLS 50
2.3.2 TYPES OF CATALYSTS 54
2.3.3 TYPES OF MEMBRANES 54
2.3.4 SYSTEM DEVELOPMENT 57
2.4 DIRECT BOROHYDRIDE FUEL CELLS 59
2.4.1 CATALYST DEVELOPMENT 59
2.4.2 SYSTEM DEVELOPMENT 61
2.5 REGENERATIVE FUEL CELLS 62
2.5.1 ELECTROCATALYSTS 62
2.5.2 SYSTEM DEVELOPMENT 63
2.6 CONCLUSIONS AND OUTLOOK 64
ACKNOWLEDGMENTS 65
REFERENCES 65
3 ELECTROCATALYTIC REACTIONS INVOLVED IN LOW-TEMPERATURE FUEL CELLS 75
CLAUDE LAMY
3.1 INTRODUCTION 75
3.2 PREPARATION AND CHARACTERIZATION OF PT-BASED PLURIMETALLIC
ELECTROCATALYSTS 76
3.2.1 PREPARATION METHODS OF THE CATALYSTS 76
3.2.1.1 ELECTROCHEMICAL DEPOSITION 76
3.2.1.2 IMPREGNATION-REDUCTION METHODS 77
3.2.1.3 COLLOIDAL METHODS 78
3.2.1.4 CARBONYL COMPLEX ROUTE 81
3.2.1.5 PLASMA-ENHANCED PVD 82
3.2.2 CHARACTERIZATION OF CATALYSTS AND DETERMINATION OF REACTION
MECHANISMS BY PHYSICOCHEMICAL METHODS 82
3.2.2.1 PHYSICOCHEMICAL CHARACTERIZATIONS 82
22.2.2 ELECTROCHEMICAL MEASUREMENTS: CYCLIC VOLTAMMETRY AND CO
STRIPPING 83
3.2.2.3 INFRARED REFLECTANCE SPECTROSCOPY (EMIRS, FTIRS) 85
3.2.2.4 DIFFERENTIAL ELECTROCHEMICAL MASS SPECTROMETRY 86
3.22.5 CHROMATOGRAPHIC TECHNIQUES 88
3.3 MECHANISMS OF THE ELECTROCATALYTIC REACTIONS INVOLVED IN LOW-
TEMPERATURE FUEL CELLS 90
3.3.1 ELECTROCATALYTIC OXIDATION OF HYDROGEN 91
3.3.2 ELECTROCATALYTIC REDUCTION OF DIOXYGEN 93
3.3.3 ELECTROCATALYSIS OF CO OXIDATION 96
3.3.4 OXIDATION OF ALCOHOLS IN A DIRECT ALCOHOL FUEL CELL
(DMFC, DEFC) 98
3.3.4.1 OXIDATION OF METHANOL 99
3.3.4.2 OXIDATION OF ETHANOL 102
3.4 CONCLUSIONS AND OUTLOOK 105
ACKNOWLEDGMENT 106
REFERENCES 106
4 DIRECT HYDROCARBON LOW-TEMPERATURE FUEL CELL 113
AYAN MUKHERJEE AND SUDDHASATWA BASU
4.1 INTRODUCTION 113
4.2 DIRECT METHANOL FUEL CELL 114
4.2.1 EFFICIENCY OF DMFC 116
4.2.2 METHANOL CROSSOVER 116
4.2.3 CATALYST FOR METHANOL ELECTROOXIDATION 117
4.3 DIRECT ETHANOL FUEL CELL 119
4.3.1 PROTON EXCHANGE MEMBRANE-BASED DEFC 120
4.3.2 ANION EXCHANGE MEMBRANE-BASED DEFC 120
4.3.3 ETHANOL CROSSOVER 121
4.3.4 CATALYST FOR ETHANOL ELECTROOXIDATION 122
4.4 DIRECT ETHYLENE GLYCOL FUEL CELL 125
4.4.1 PROTON EXCHANGE MEMBRANE-BASED DEGFC 126
4.4.2 ANION EXCHANGE MEMBRANE-BASED DEGFC 126
4.4.3 CATALYST FOR ETHYLENE GLYCOL ELECTROOXIDATION 128
4.5 DIRECT FORMIC ACID FUEL CELL 129
4.5.1 CATALYST FOR FORMIC ACID ELECTROOXIDATION 130
4.6 DIRECT GLUCOSE FUEL CELL 131
4.7 COMMERCIALIZATION STATUS OF DHFC 132
4.8 CONCLUSIONS AND OUTLOOK 134
REFERENCES 137
5 THE OSCILLATORY ELECTROOXIDATION OF SMALL ORGANIC MOLECULES 145
HAMILTON VARELA, MARCELO V.F. DELMONDE, AND ALANA A. ZUELKE
5.1 INTRODUCTION 145
5.2 IN SITU AND ONLINE APPROACHES 147
5.3 THE EFFECT OF TEMPERATURE 152
5.4 MODIFIED SURFACES 155
5.5 CONCLUSIONS AND OUTLOOK 157
ACKNOWLEDGMENTS 157
REFERENCES 158
6 DEGRADATION MECHANISM OF MEMBRANE FUEL CELLS WITH MONOPLATINUM
AND MULTICOMPONENT CATHODE CATALYSTS 165
MIKHAIL R. TARASEVICH AND VERA A. BOGDANOVSKAYA
6.1 INTRODUCTION 165
6.2 SYNTHESIS AND EXPERIMENTAL METHODS OF STUDYING CATALYTIC SYSTEMS
UNDER MODEL CONDITIONS 166
6.2.1 SYNTHESIS METHODS FOLLOWED 166
6.2.1.1 POLYOL TECHNIQUE OF SYNTHESIS OF PT/C CATALYSTS 167
6.2.1.2 THERMOCHEMICAL METHOD OF SYNTHESIS OF BI- AND TRIMETALLIC
CATALYSTS 167
6.2.2 ELECTROCHEMICAL RESEARCH METHODS 167
6.2.3 STRUCTURAL RESEARCH METHODS 168
6.3 CHARACTERISTICS OF COMMERCIAL AND SYNTHESIZED CATALYSTS 169
6.3.1 CORROSION STABILITY OF CMS (SUPPORTS) 169
6.3.1.1 ELECTROCHEMICAL CORROSION EXPOSURE 169
6.3.1.2 CHEMICAL CORROSION EXPOSURE 171
6.3.2 ELECTROCHEMICAL AND STRUCTURAL CHARACTERISTICS OF CATALYTIC
SYSTEMS 171
6.3.2.1 MONOMETALLIC CATALYSTS WITH PT CONTENT OF 20 AND 40 WT.% 171
63.2.2 BIMETALLIC CATALYTIC SYSTEMS (PTM) 174
6.3.2.3 TRIMETALLIC CATALYSTS (PTCOCR/C) 175
6.4 METHODS OF TESTING CATALYSTS WITHIN EC ME AS 179
6.5 MECHANISM OF DEGRADATION PHENOMENON IN MEAS WITH COMMERCIAL
PT/C CATALYSTS 181
6.6 CHARACTERISTICS OF MEAS WITH 40PT/CNT-T-BASED CATHODE 187
6.7 CHARACTERISTICS OF MEAS WITH 50PTCOCR/C-BASED CATHODES 188
6.8 CONCLUSIONS AND OUTLOOK 192
ACKNOWLEDGMENTS 193
REFERENCES 193
7 RECENT DEVELOPMENTS IN ELECTROCATALYSTS AND HYBRID ELECTROCATALYST
SUPPORT SYSTEMS FOR POLYMER ELECTROLYTE FUEL CELLS 197
SURBHI SHARMA
7.1 INTRODUCTION 197
7.2 CURRENT STATE OF PT AND NON-PT ELECTROCATALYSTS SUPPORT SYSTEMS FOR
PEFC 197
73 NOVEL PT ELECTROCATALYSTS 199
7.3.1 ID, 2D, AND 3D NANOSTRUCTURES 200
7.4 PT-BASED ELECTROCATALYSTS ON NOVEL CARBON SUPPORTS 203
7.4.1 MESOPOROUS CARBON SUPPORTS 203
7.4.2 CARBON NANOTUBE SUPPORTS 204
7.4.3 GRAPHENE-BASED SUPPORTS 205
73 PT-BASED ELECTROCATALYSTS ON NOVEL CARBON-FREE SUPPORTS 207
7.5.1 TUNGSTEN OXIDES AND CARBIDES 207
7.5.2 TIN OXIDE SUPPORTS 208
7.5.3 TITANIUM NITRIDE SUPPORTS 210
7.5.4 DOPED METAL-BASED SUPPORTS 211
7.5.4.1 DOPED TIN OXIDE 212
7.5.4.2 DOPED TITANIUM DIOXIDE 212
7.6 PT-FREE METAL ELECTROCATALYSTS 213
7.6.1 METAL ON NOVEL CARBON SUPPORTS 213
7.6.2 METAL ON NOVEL CARBON-FREE SUPPORTS 214
7.7 INFLUENCE OF SUPPORT: ELECTROCATALYST-SUPPORT INTERACTIONS AND
EFFECT OF
SURFACE FUNCTIONAL GROUPS 214
7.7.1 ENHANCING ELECTROCATALYTIC ACTIVITY 215
7.7.2 ENHANCING CO TOLERANCE 216
7.8 HYBRID CATALYST SUPPORT SYSTEMS 218
7.8.1 CARBON-ENRICHED METAL-BASED SUPPORTS 218
7.8.2 POLYMERS IN CATALYST SUPPORT SYSTEMS 221
7.8.3 POLYOXOMETALATES LIQUID CATHOLYTES 222
7.9 CONCLUSIONS AND OUTLOOK 223
REFERENCES 224
8 ROLE OF CATALYST SUPPORTS: GRAPHENE BASED NOVEL ELECTROCATALYSTS 241
CHUNMEI ZHANG AND WEI CHEN
8.1 INTRODUCTION 241
8.2 GRAPHENE-BASED CATHODE CATALYSTS FOR OXYGEN REDUCTION
REACTION 243
8.2.1 GRAPHENE-SUPPORTED NONNOBLE METAL ORR CATALYSTS 244
8.2.1.1 TRANSITION METAL-NITROGEN (N) GRAPHENE CATALYSTS 244
8.2.1.2 GRAPHENE-SUPPORTED METAL OXIDE/SULFIDE NANOCOMPOSITES 244
8.2.2 GRAPHENE-SUPPORTED NOBLE METAL CATALYSTS 246
8.2.2.1 GRAPHENE-SUPPORTED PT/PT-ALLOY ORR CATALYSTS 247
5.2.2.2 GRAPHENE-SUPPORTED OTHER METAL ALLOYS AS ORR CATALYSTS 250
8.3 GRAPHENE-BASED ANODE CATALYSTS 250
8.3.1 GRAPHENE-BASED CATALYSTS FOR METHANOL OXIDATION REACTION 251
8.3.2 GRAPHENE-BASED CATALYSTS FOR ETHANOL OXIDATION REACTION 253
8.3.3 GRAPHENE-BASED CATALYSTS FOR FORMIC ACID OXIDATION REACTION 254
8.4 CONCLUSIONS AND OUTLOOK 256
ACKNOWLEDGMENT 256
REFERENCES 257
9 RECENT PROGRESS IN NONNOBLE METAL ELECTROCATALYSTS FOR OXYGEN
REDUCTION FOR ALKALINE FUEL CELLS 267
QINGGANG HE AND XIN DENG
9.1 INTRODUCTION 267
9.1.1 ALKALINE FUEL CELLS 267
9.1.2 OXYGEN REDUCTION REACTION 269
9.2 NONNOBLE METAL ELECTROCATALYSTS 272
9.2.1 CARBON-SUPPORTED M ETAL-NB MATRIX 272
9.2.1.1 FUNDAMENTAL OVERVIEW 272
9.2.1.2 PROPOSED ACTIVE SITES
273
9.2.1.3 SYNTHESIS METHODS 276
9.2.2 TRANSITION METAL OXIDES
280
9.2.3 TRANSITION METAL CHALCOGENIDES 283
9.2.4 TRANSITION METAL CARBIDES/NITRIDES/OXYNITRIDES 285
9.2.4.1 TRANSITION METAL CARBIDES 285
9.2.4.2 TRANSITION METAL NITRIDES/OXYNITRIDES 286
9.2.5 PEROVSKITES 287
9.2.6 METAL-FREE ELECTROCATALYSTS 289
9.2.6.1 CARBON NANO TUBE-BASED METAL-FREE ELECTROCATALYSTS 289
9.2.6.2 GRAPHENE-BASED METAL-FREE ELECTROCATALYSTS 293
9.2.6.3 OTHER TYPES OF METAL-FREE CARBON ELECTROCATALYSTS 294
9.3 CONCLUSIONS AND OUTLOOK 296
REFERENCES 299
10 ANODE ELECTROCATALYSTS FOR DIRECT BOROHYDRIDE AND DIRECT AMMONIA
BORANE FUEL CELLS 317
PIERRE-YVES OLUF ANICET ZADICK, NATHALIE JOB
,
AND MARIAN CHATENET
10.1 INTRODUCTION 317
10.2 DIRECT BOROHYDRIDE (AND AMMONIA BORANE) FUEL CELLS 318
10.2.1 BASICS OF DBFC AND DABFC 318
10.2.2 MAIN ISSUES OF THE DBFC AND DABFC 319
10.3 MECHANISTIC INVESTIGATIONS OF BOR AND BH3OR AT NOBLE
ELECTROCATALYSTS 320
10.3.1 DIFFERENT FAMILIES OF (ELECTRO)CATALYSTS FOR THE BOR 320
10.3.2 BOR MECHANISM AT PT SURFACES 323
10.3.3 THE ISSUE OF H2 GENERATION (AND POSSIBLE OXIDATION) DURING THE
BOR 324
10.3.4 EFFECTS OF THE MASS TRANSFER, PT LOADING, AND ACTIVE LAYER
THICKNESS
ON THE BOR 325
10.3.5 DOES THE BH3OR MECHANISM DIFFER FROM THE BOR? 328
10.4 TOWARD IDEAL ANODE OF DBFC AND DABFC 329
10.4.1 PRACTICAL BENCHMARKS FOR THE EVALUATION OF ANODE ELECTROCATALYST
MATERIALS 330
10.4.1.1 ROTATING DISK ELECTRODE STUDIES IN HALF-CELL CONFIGURATION 330
10.4.1.2 HYDROGEN EVOLUTION AND FARADAIC EFFICIENCY OF THE
ELECTROCATALYSTS 331
10.4.2 PERFORMANCES OF DBFC AND DABFC UNIT CELLS 333
10.4.3 TOWARD OPTIMAL BOR AND ABOR ELECTROCATALYSTS? 335
10.5 DURABILITY OF DBFC AND DABFC ELECTROCATALYSTS 336
10.5.1 FROM FC STUDIES 336
10.5.2 FROM ACCELERATED STRESS TESTS 336
10.6 CONCLUSIONS AND OUTLOOK 339
REFERENCES 340
11 RECENT ADVANCES IN NANOSTRUCTURED ELECTROCATALYSTS FOR LOW-
TEMPERATURE DIRECT ALCOHOL FUEL CELLS 347
SRABANTI GHOSH, THANDAVARAYAN MAIYALAGAN, AND RAJENDRA N. BASU
11.1 INTRODUCTION 347
11.2 FUNDAMENTALS OF ELECTROOXIDATION OF ORGANIC MOLECULES FOR FUEL
CELLS 348
11.3 INVESTIGATION OF ELECTROCATALYTIC PROPERTIES OF NANOMATERIALS 352
11.4 ANODE ELECTROCATALYSTS FOR DIRECT METHANOL OR ETHANOL FUEL CELLS
353
11.4.1 NOBEL METAL-BASED NANOSTRUCTURED CATALYSTS 353
11.4.2 PALLADIUM-BASED NANOSTRUCTURED CATALYSTS 354
11.4.3 IMPROVED PERFORMANCE OF BINARY AND TERNARY CATALYSTS 355
11.4.4 EFFECT OF SUPPORT ON CATALYTIC ACTIVITY OF NANOSTRUCTURED
ELECTROCATALYSTS 35 7
11.5 ANODE CATALYSTS FOR DIRECT POLYOL FUEL CELLS (ETHYLENE GLYCOL AND
GLYCEROL) 359
11.6 CONCLUSIONS AND OUTLOOK 361
REFERENCES 362
12 ELECTROCATALYSIS OF FACET-CONTROLLED NOBLE METAL NANOMATERIALS
FOR LOW-TEMPERATURE FUEL CELLS 373
XIAOJUN LIU, WENYUE LI, AND SHOUZHONG ZOU
12.1 INTRODUCTION 373
12.2 SYNTHESIS OF SHAPE-CONTROLLED NOBLE METAL NANO MATERIALS 374
12.2.1 ONE-POT CHEMICAL REDUCTION 375
12.2.2 SEED-MEDIATED GROWTH 377
12.2.3 SOLVOTHERMAL AND HYDROTHERMAL SYNTHESIS 378
12.2.4 GALVANIC REPLACEMENT 381
12.2.5 ELECTROCHEMICAL DEPOSITION 383
12.3 APPLICATIONS OF SHAPE-CONTROLLED NOBLE METAL NANOMATERIALS AS
CATALYSTS FOR LOW-TEMPERATURE FUEL CELLS 383
12.3.1 OXYGEN REDUCTION REACTION 383
12.3.2 METHANOL OXIDATION REACTION 385
12.3.3 ETHANOL OXIDATION REACTION 386
12.3.4 FORMIC ACID OXIDATION REACTION 387
12.4 CONCLUSIONS AND OUTLOOK 389
ACKNOWLEDGMENT 390
REFERENCES 390
13 HETEROATOM-DOPED NANOSTRUCTURED CARBON MATERIALS AS ORR
ELECTROCATALYSTS FOR LOW-TEMPERATURE FUEL CELLS 401
THANDAVARAYAN MAIYALAGAN, SUBBIAH MAHESWARI, AND VISWANATHAN
5.
SAJI
13.1 INTRODUCTION 401
13.2 OXYGEN REDUCTION REACTION AND METHANOL-TOLERANT ORR
CATALYSTS 402
13.3 HETEROATOM-DOPED NANOSTRUCTURED CARBON MATERIALS 403
13.3.1 SYNTHESIS OF HETEROATOM-DOPED CARBON MATERIALS 403
13.3.2 SINGLE HETEROATOM-DOPED CARBON NANOMATERIALS 403
13.3.2.1 N DOPING 403
13.3.2.2 STABILITY OF N-DOPED GRAPHENE 406
13.3.2.3 B DOPING 408
13.3.2.4 P DOPING 408
13.3.2.5 S DOPING 409
13.3.2.6 XPS ANALYSIS 409
13.3.2.7 HALOGEN DOPING 411
13.3.3 DUAL HETEROATOM-DOPED CARBON MATERIALS 411
13.3.4 MULTIHETEROATOM-DOPED CARBON MATERIALS 414
13.4 HETEROATOM-DOPED CARBON-BASED NANOCOMPOSITES 415
13.5 CONCLUSIONS AND OUTLOOK 416
REFERENCES 417
14 TRANSITION METAL OXIDE, OXYNITRIDE, AND NITRIDE ELECTROCATALYSTS WITH
AND
WITHOUT SUPPORTS FOR POLYMER ELECTROLYTE FUEL CELL CATHODES 423
MITSUHARU CHISAKA
14.1 INTRODUCTION 423
14.2 TRANSITION METAL OXIDE AND OXYNITRIDE ELECTROCATALYSTS 424
14.2.1 STABILITY 424
14.2.2 ACTIVITY 427
14.2.2.1 EVALUATION OF ORR ACTIVITY 427
14.2.2.2 ACTIVE SITES FOR ORR 431
14.3 TRANSITION METAL NITRIDE ELECTROCATALYSTS 433
14.4 CARBON SUPPORT-FREE ELECTROCATALYSTS 434
14.5 CONCLUSIONS AND OUTLOOK 435
ACKNOWLEDGMENT 436
REFERENCES 436
15 SPECTROSCOPY AND MICROSCOPY FOR CHARACTERIZATION OF FUEL CELL
CATALYSTS 443
CHILAN NGO, MICHAEL J. DZARA, SARAH SHULDA, AND SVITLANA PYLYPENKO
15.1 INTRODUCTION 443
15.2 ELECTRON MICROSCOPY 444
15.2.1 SCANNING ELECTRON MICROSCOPY 444
15.2.2 TRANSMISSION ELECTRON MICROSCOPY 446
15.2.3 IN SITU TEM 446
15.2.4 SCANNING TRANSMISSION ELECTRON MICROSCOPY 449
15.3 ELECTRON SPECTROSCOPY: ENERGY-DISPERSIVE SPECTROSCOPY AND ELECTRON
ENERGY LOSS SPECTROSCOPY 449
15.4 X-RAY SPECTROSCOPY 451
15.4.1 X-RAY PHOTOELECTRON SPECTROSCOPY 452
15.4.2 X-RAY ABSORPTION SPECTROSCOPY 453
15.5 GAMMA SPECTROSCOPY: MOSSBAUER 455
15.6 VIBRATIONAL SPECTROSCOPY: FOURIER TRANSFORM INFRARED SPECTROSCOPY
AND
RAMAN SPECTROSCOPY 456
15.7 COMPLEMENTARY TECHNIQUES 459
15.7.1 X-RAY DIFFRACTION AND SMALL-ANGLE/WIDE-ANGLE X-RAY SCATTERING 459
15.7.2 GAS ADSORPTION/DESORPTION AND THERMAL ANALYSIS TECHNIQUES 460
15.7.3 INDUCTIVELY COUPLED PLASMA METHODS 461
15.7.4 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 461
15.7.5 ATOM PROBE TOMOGRAPHY 461
15.8 CONCLUSIONS AND OUTLOOK 462
REFERENCES 462
16 RATIONAL CATALYST DESIGN METHODOLOGIES: PRINCIPLES AND FACTORS
AFFECTING THE CATALYST DESIGN 467
SERGEY STOLBOV AND MARISOL ALCANTARA ORTIGOZA
16.1 INTRODUCTION 467
16.2 OXYGEN REDUCTION REACTION 468
16.3 RECENT PROGRESS IN SEARCH FOR EFFICIENT ORR CATALYSTS 469
16.4 PHYSICS AND CHEMISTRY BEHIND ORR 471
16.5 RATIONAL DESIGN OF ORR CATALYSTS 475
16.5.1 ELECTROCHEMICAL AND THERMODYNAMIC STABILITY 475
16.5.2 CATALYTIC ACTIVITY TOWARD ORR 478
16.6 RATIONALLY DESIGNED ORR CATALYSTS ADDRESSING COST-EFFECTIVENESS 482
16.7 CONCLUSIONS AND OUTLOOK 483
REFERENCES 483
17 EFFECT OF GAS DIFFUSION LAYER STRUCTURE ON THE PERFORMANCE
OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL 489
BRANKO N. POPOV
,
SEHKYU PARK, AND JONG-WON LEE
17.1 INTRODUCTION 489
17.2 STRUCTURE OF GAS DIFFUSION LAYER 490
17.2.1 SINGLE-LAYER MACROPOROUS SUBSTRATE 491
17.2.2 DUAL-LAYER GAS DIFFUSION LAYER 493
17.3 CARBON MATERIALS 493
17.4 HYDROPHOBIC AND HYDROPHILIC TREATMENTS 494
17.5 MICROPOROUS LAYER THICKNESS 499
17.6 MICROSTRUCTURE MODIFICATION 500
17.7 CONCLUSIONS AND OUTLOOK 500
ACKNOWLEDGMENT 505
REFERENCES 505
18 EFFICIENT DESIGN AND FABRICATION OF POROUS METALLIC ELECTROCATALYSTS
511
YAOVI HOLADE, ANA*FS LEHOUX, HYND REMITA, KOUAKOU B. KOKOH, AND
TEKO W. NAPPORN
18.1 INTRODUCTION 511
18.2 ADVANCES IN THE DESIGN AND FABRICATION OF MESOPOROUS METALLIC
MATERIALS 512
18.2.1 DEALLOYING ROUTE: THE GREAT AND POSITIVE ASPECT OF CONTROLLED
DISSOLUTION/CORROSION 512
18.2.2 NANOARCHITECTURE ENGINEERING BY A TEMPLATING APPROACH: FROM ID TO
3D MULTISCALE DESIGN 513
18.2.3 CONTROLLED RADIOLYTIC SYNTHESIS: AN ELEGANT PROCESS FOR DESIGNING
MULTISPATIAL NANOSTRUCTURES 515
18.2.4 OTHER STRATEGIES FOR TUNING POROSITY IN METALLIC NANOMATERIALS:
NANOCAGES, NANOFRAMES, AND SO ON 517
18.3 NANOPOROUS METALLIC MATERIALS AT WORK IN ELECTROCATALYSIS 520
18.3.1 ANODIC CATALYSIS: ELECTROCATALYTIC OXIDATION OF ORGANIC
MOLECULES 520
18.3.2 CATHODIC CATALYSIS: ELECTROCHEMICAL OXYGEN REDUCTION REACTION 523
18.3.3 OTHER ELECTROCHEMICAL APPLICATIONS: FUEL CELLS, ELECTROANALYSIS,
AND
SENSING 524
18.4 CONCLUSIONS AND OUTLOOK 526
REFERENCES 527
19 DESIGN AND FABRICATION OF DEALLOYING-DRIVEN NANOPOROUS METALLIC
ELECTROCATALYST 533
ZHONGHUA ZHANG AND WANG YING
19.1 INTRODUCTION 533
19.2 DESIGN OF PRECURSORS FOR DEALLOYING- DRIVEN NANOPOROUS METALLIC
ELECTROCATALYSTS 535
19.2.1 COMPOSITIONS 536
19.2.2 FABRICATION METHODS OF PRECURSORS 537
19.3 MICROSTRUCTURAL MODULATION OF DEALLOYING-DRIVEN NANOPOROUS METALLIC
ELECTROCATALYSTS 538
19.3.1 CONTROL OVER THE DEALLOYING PROCESS 539
19.3.2 FURTHER MODIFICATION OF NPMS 542
19.4 CATALYTIC PROPERTIES OF DEALLOYING-DRIVEN NANOPOROUS METALLIC
ELECTROCATALYSTS 542
19.4.1 NANOPOROUS METALS 543
19.4.2 NANOPOROUS ALLOYS 545
19.4.3 NANOPOROUS NANOCOMPOSITES 547
19.4.4 OTHER DEALLOYED NANOSTRUCTURED ALLOYS 548
19.4.5 DENSITY FUNCTIONAL THEORY CALCULATIONS 550
19.5 CONCLUSIONS AND OUTLOOK 551
ACKNOWLEDGMENTS 551
REFERENCES 551
20 RECENT ADVANCES IN PLATINUM MONOLAYER ELECTROCATALYSTS FOR THE OXYGEN
REDUCTION REACTION 557
KOTARO SASAKI, KURIAN A. KUTTIYIEL, JIA X. WANG, MIOMIR B. VUKMIROVIC,
AND
RADOSLAV R. ADZIC
20.1 INTRODUCTION 557
20.2 PT ML ON PD CORE ELECTROCATALYSTS (PTML/PD/C) 558
20.2.1 SYNTHESIS, STRUCTURE, AND ACTIVITY 558
20.2.2 POTENTIAL CYCLE TESTS BETWEEN 0.6 AND 0.9 V 560
20.2.3 PERFORMANCE AT HIGH CURRENT DENSITIES 563
20.3 PT ML ON PDAU CORE ELECTROCATALYST (PTML/PDAU/C) 564
20.3.1 SYNTHESIS, CHARACTERIZATION, AND STABILITY 564
20.3.2 POTENTIAL CYCLE TESTS BETWEEN 0.6 AND 1.0 V 565
20.3.3 POTENTIAL CYCLE TESTS BETWEEN 0.6 AND 1.4 V 567
20.4 FURTHER IMPROVING ACTIVITY AND STABILITY OF PT ML
ELECTROCATALYSTS 5 70
20.4.1 NITRIDE-STABILIZED CORES 570
20.4.1.1 PTMN (M = FE, CO, AND NI) CORE-SHELL CATALYSTS 570
20.4.1.2 PT ML ON PDNIN CORE CATALYSTS 573
20.4.2 INTERMETALLIC PD-BASED NANOPARTICLES 573
20.4.3 IRIDIUM (IR)-BASED NANOPARTICLE CORES 578
20.5 CONCLUSIONS AND OUTLOOK 579
ACKNOWLEDGMENTS 579
REFERENCES
580
INDEX 585
|
any_adam_object | 1 |
author2 | Maiyalagan, Thandavarayan Saji, Viswanathan S. |
author2_role | edt edt |
author2_variant | t m tm v s s vs vss |
author_GND | (DE-588)1137387831 (DE-588)113738817X |
author_facet | Maiyalagan, Thandavarayan Saji, Viswanathan S. |
building | Verbundindex |
bvnumber | BV044429534 |
classification_rvk | VE 7040 VN 6050 VN 7340 ZN 8750 |
ctrlnum | (OCoLC)1002228379 (DE-599)DNB1123661707 |
dewey-full | 540 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 540 - Chemistry and allied sciences |
dewey-raw | 540 |
dewey-search | 540 |
dewey-sort | 3540 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02821nam a2200709 c 4500</leader><controlfield tag="001">BV044429534</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180126 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170728s2017 gw a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1123661707</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527341320</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-527-34132-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1002228379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1123661707</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 7040</subfield><subfield code="0">(DE-625)147136:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 6050</subfield><subfield code="0">(DE-625)147593:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7340</subfield><subfield code="0">(DE-625)147619:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8750</subfield><subfield code="0">(DE-625)157645:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrocatalysts for low temperature fuel cells</subfield><subfield code="b">fundamentals and recent trends</subfield><subfield code="c">edited by Thandavarayan Maiyalagan and Viswanathan S. Saji</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH Verlag GmbH & Co. KGaA</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxv, 588 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Niedertemperaturbrennstoffzelle</subfield><subfield code="0">(DE-588)4325119-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrokatalyse</subfield><subfield code="0">(DE-588)4151819-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Brennstoffzelle</subfield><subfield code="0">(DE-588)4008195-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Batterien u. Brennstoffzellen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Batteries & Fuel Cells</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Brennstoffzelle</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Catalysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elektrokatalysator</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elektrokatalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Heterogene Katalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Katalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialien f. Energiesysteme</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials for Energy Systems</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialwissenschaften</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Niedertemperaturbrennstoffzelle</subfield><subfield code="0">(DE-588)4325119-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elektrokatalyse</subfield><subfield code="0">(DE-588)4151819-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Brennstoffzelle</subfield><subfield code="0">(DE-588)4008195-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Elektrokatalyse</subfield><subfield code="0">(DE-588)4151819-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maiyalagan, Thandavarayan</subfield><subfield code="0">(DE-588)1137387831</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saji, Viswanathan S.</subfield><subfield code="0">(DE-588)113738817X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, ePDF</subfield><subfield code="z">978-3-527-80389-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, ePub</subfield><subfield code="z">978-3-527-80386-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, Mobi</subfield><subfield code="z">978-3-527-80388-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, oBook</subfield><subfield code="z">978-3-527-80387-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029830959&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029830959</subfield></datafield></record></collection> |
id | DE-604.BV044429534 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:52:43Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527341320 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029830959 |
oclc_num | 1002228379 |
open_access_boolean | |
owner | DE-11 DE-703 DE-29T |
owner_facet | DE-11 DE-703 DE-29T |
physical | xxv, 588 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Wiley-VCH Verlag GmbH & Co. KGaA |
record_format | marc |
spelling | Electrocatalysts for low temperature fuel cells fundamentals and recent trends edited by Thandavarayan Maiyalagan and Viswanathan S. Saji Weinheim Wiley-VCH Verlag GmbH & Co. KGaA [2017] © 2017 xxv, 588 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Niedertemperaturbrennstoffzelle (DE-588)4325119-5 gnd rswk-swf Elektrokatalyse (DE-588)4151819-6 gnd rswk-swf Brennstoffzelle (DE-588)4008195-3 gnd rswk-swf Batterien u. Brennstoffzellen Batteries & Fuel Cells Brennstoffzelle Catalysis Chemie Chemistry Elektrokatalysator Elektrokatalyse Heterogene Katalyse Katalyse Materialien f. Energiesysteme Materials Science Materials for Energy Systems Materialwissenschaften Niedertemperaturbrennstoffzelle (DE-588)4325119-5 s Elektrokatalyse (DE-588)4151819-6 s DE-604 Brennstoffzelle (DE-588)4008195-3 s Maiyalagan, Thandavarayan (DE-588)1137387831 edt Saji, Viswanathan S. (DE-588)113738817X edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, ePDF 978-3-527-80389-7 Erscheint auch als Online-Ausgabe, ePub 978-3-527-80386-6 Erscheint auch als Online-Ausgabe, Mobi 978-3-527-80388-0 Erscheint auch als Online-Ausgabe, oBook 978-3-527-80387-3 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029830959&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Electrocatalysts for low temperature fuel cells fundamentals and recent trends Niedertemperaturbrennstoffzelle (DE-588)4325119-5 gnd Elektrokatalyse (DE-588)4151819-6 gnd Brennstoffzelle (DE-588)4008195-3 gnd |
subject_GND | (DE-588)4325119-5 (DE-588)4151819-6 (DE-588)4008195-3 |
title | Electrocatalysts for low temperature fuel cells fundamentals and recent trends |
title_auth | Electrocatalysts for low temperature fuel cells fundamentals and recent trends |
title_exact_search | Electrocatalysts for low temperature fuel cells fundamentals and recent trends |
title_full | Electrocatalysts for low temperature fuel cells fundamentals and recent trends edited by Thandavarayan Maiyalagan and Viswanathan S. Saji |
title_fullStr | Electrocatalysts for low temperature fuel cells fundamentals and recent trends edited by Thandavarayan Maiyalagan and Viswanathan S. Saji |
title_full_unstemmed | Electrocatalysts for low temperature fuel cells fundamentals and recent trends edited by Thandavarayan Maiyalagan and Viswanathan S. Saji |
title_short | Electrocatalysts for low temperature fuel cells |
title_sort | electrocatalysts for low temperature fuel cells fundamentals and recent trends |
title_sub | fundamentals and recent trends |
topic | Niedertemperaturbrennstoffzelle (DE-588)4325119-5 gnd Elektrokatalyse (DE-588)4151819-6 gnd Brennstoffzelle (DE-588)4008195-3 gnd |
topic_facet | Niedertemperaturbrennstoffzelle Elektrokatalyse Brennstoffzelle |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029830959&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT maiyalaganthandavarayan electrocatalystsforlowtemperaturefuelcellsfundamentalsandrecenttrends AT sajiviswanathans electrocatalystsforlowtemperaturefuelcellsfundamentalsandrecenttrends AT wileyvch electrocatalystsforlowtemperaturefuelcellsfundamentalsandrecenttrends |