Process systems and materials for CO2 capture: modelling, design, control and integration
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2017
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xxviii, 658 pages |
ISBN: | 9781119106449 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044419666 | ||
003 | DE-604 | ||
005 | 20180220 | ||
007 | t | ||
008 | 170721s2017 xxu |||| 00||| eng d | ||
010 | |a 016051990 | ||
020 | |a 9781119106449 |9 978-1-119-10644-9 | ||
035 | |a (OCoLC)1024100054 | ||
035 | |a (DE-599)BVBBV044419666 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 | ||
050 | 0 | |a SD387.C37 | |
082 | 0 | |a 628.5/3 |2 23 | |
084 | |a VN 5430 |0 (DE-625)147568:253 |2 rvk | ||
245 | 1 | 0 | |a Process systems and materials for CO2 capture |b modelling, design, control and integration |c edited by Athanasios I. Papadopoulos and Panos Seferlis |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2017 | |
300 | |a xxviii, 658 pages | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Umwelt | |
650 | 4 | |a Carbon sequestration | |
650 | 4 | |a Sequestration (Chemistry) | |
650 | 4 | |a Carbon dioxide |x Environmental aspects | |
650 | 4 | |a Combustion gases | |
650 | 4 | |a Greenhouse gas mitigation | |
650 | 0 | 7 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Carbon dioxide capture and storage |0 (DE-588)7628985-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Carbon dioxide capture and storage |0 (DE-588)7628985-0 |D s |
689 | 0 | 1 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Carbon dioxide capture and storage |0 (DE-588)7628985-0 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Papadopoulos, Athanasios I. |d 1977- |0 (DE-588)1137885025 |4 edt | |
700 | 1 | |a Seferlis, Panos |d 1967- |0 (DE-588)1138057630 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-1-119-10642-5 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029821296&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029821296&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-029821296 |
Datensatz im Suchindex
_version_ | 1804177714143297536 |
---|---|
adam_text | Contents
About the Editors xvii
List of Contributors xix
Preface xxvii
A
Section 1 Modelling and Design of Materials 1
1 The Development of a Molecular Systems Engineering Approach to the Design
of Carbon-capture Solvents 3
Edward Graham, Smitha Gopinath, Esther Forte; George Jackson, Amparo Galindo,
and Claire S. Adjiman
1.1 Introduction 3
1.2 Predictive Thermodynamic Models for the Integrated Molecular and Process
Design of Physical Absorption Processes 6
1.2.1 An Introduction to SAFT 6
1.2.2 Group Contribution (GC) Versions of SAFT 10
1.2.3 Model Development in SAFT 12
1.2.4 SAFT Models for Physical Absorption Systems 14
1.3 Describing Chemical Equilibria with SAFT 16
1.3.1 Chemical and Physical Models of Reactions 17
1.3.2 Modelling Aqueous Mixtures of Amine Solvents and C02 21
1.4 Integrated Computer-aided Molecular and Process Design using SAFT 24
1.4.1 CAMPD of Physical Absorption Systems 25
1.4.2 CAMPD of Chemical Absorption Systems 28
1.5 Conclusions 29
List of Abbreviations 30
Acknowledgments 31
References 31
2 Methods and Modelling for Post-combustion C02 Capture 43
Philip Fosbol, Nicolas von Solms, Arne Gladiš, Kaj Thomsen,
and Georgios M. Kontogeorgis
2.1 Introduction to Post-combustion C02 Capture: The Role of Solvents
and Some Engineering Challenges 43
2.1.1 The Complex Physical Chemistry of C02 and its Mixtures 45
vi 1 Contents
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.6
2.7
3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.2
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.5
The Corrosive Nature of C02 46
Which is the Best C02 Capture Method? 46
Lack of Pilot Plant Data 48
C02 Storage 48
The Fragmentation of Science and Technology 49
Extended UNIQUAC: A Successful Thermodynamic Model for CCS
Applications 49
Equilibrium Approach 49
Rate-based Modelling 55
Rate-based Model Validation 58
C02 Capture using Alkanolamines: Thermodynamics and Design 60
C02 Capture using Ammonia: Thermodynamics and Design 61
New Solvents: Enzymes, Hydrates, Phase Change Solvents 62
Enzymes in C02 Capture 62
Gas Hydrates in C02 Capture 66
Phase Change Solvents 68
Pilot Plant Studies: Measurements and Modelling 69
Conclusions and Future Perspectives 69
List of Abbreviations 74
Acknowledgements 74
References 74
Molecular Simulation Methods for C02 Capture and Gas Separation
with Emphasis on ionic Liquids 79
Niki Vergadou, Efeni Androufaki, and ioannis G. Economou
Introduction 79
Importance of C02 Capture and Gas Separation 79
Introduction to Ionic Liquids 80
How Do We Design Processes? 80
Brief Introduction to Molecular Simulation 81
Molecular Simulation of Ionic Liquids with Emphasis on C02 Capture
and Gas Separation 83
Molecular Simulation Methods for Property Calculations 83
Force Fields 85
Force Fields for C02 and Other Gases 85
Force Fields for Ionic Liquids 86
Results and Discussion: The Case of the IOLICAP Project 87
Brief Description of the Project 87
The Role of Molecular Simulation and Modeling in IOLICAP 88
Force Field Development and Optimization 89
Property Prediction for Pure ILs 92
Permeability and Selectivity of Ionic Liquids to Gases 98
Other Applications of ILs for C02 Capture and Separation Technology 100
Future Outlook 101
List of Abbreviations 102
Acknowledgments 103
References 103
Contents i vii
4 Thermodynamics of Aqueous Methyldiethanolamine/Piperazine
for C02 Capture 113
Peter T. Frailie, Jorge M. Plaza, and Gary T. Rochelle
4.1 Introduction 113
4.2 Model Description 114
4.2.1 Equilibrium Constant Calculations in Aspen Plus® 114
4.2.2 Activity Coefficient Calculation in Aspen Plus® 114
4.3 Sequential Regression Methodology 115
4.4 Model Regression 115
4.4.1 Amine/ H20 115
4.4.2 MDEA/H20/C02 118
4.4.3 PZ/H20/C02 Regression 120
4.4.4 MDEA/PZ/H20/C02 Regression 126
4.4.5 Generic MDEA/PZ Mixture 133
4.5 Conclusions 134
List of Abbreviations 134
Acknowledgements 134
References 135
5 Kinetics of Aqueous Methyldiethanoiamine/Piperazine
for C02 Capture 137
Peter T. Frailie and Gary T Rochelle
5.1 Introduction 137
5.2 Methodology 138
5.2.1 Hydraulic Properties 138
5.2.2 Mass Transfer Correlations 139
5.2.3 Reactions and Reaction Rate Constants 140
5.2.4 Sensitivity Analysis 142
5.3 Results 143
5.3.1 Reaction Constants and Binary Diffusivity 143
5.3.2 Sensitivity Analysis 146
5.3.3 Generic Amines 148
5.3.4 Rate-based Stripper Modeling 149
5.4 Conclusions 150
List of Abbreviations 151
Acknowledge ments 151
References 151
6 Uncertainties in Modelling the Environmental Impact of Solvent Loss
through Degradation for Amine Screening Purposes in Post-combustion
C02 Capture 153
Sara Badr, Stavros Papadokonstantakis, Robert Bennett; Graeme Puxty,
and Konrad Hungerbuehler
6.1 Introduction 153
6.1.1 Solvent Loss in Amine-based PCC 155
6.1.2 Solvent Production 155
6.2 Oxidative Degradation 156
viii I Contents
6.2.1 Conceptual Uncertainties in Experimental Procedures 156
6.2.2 Quantitative Uncertainties in Experimental Procedures 160
6.3 Environmental Impacts of Solvent Production 165
6.4 Conclusions and Outlook 167
List of Abbreviations 168
References 169
7 Computer-aided Molecular Design of C02 Capture Solvents
and Mixtures 173
Athanosios I. Papadopoulos, Theodoros Zarogiannls, and Panos Seferlis
7.1 Introduction 173
7.2 Overview of Associated Literature 176
7.2.1 Systematic Approaches 176
7.2.2 Empirical Approaches 177
7.3 Optimization-based Design and Selection Approach 178
7.3.1 Underlying Rationale 178
7.3.2 Design of Pure Solvents 179
7.3.3 Screening of Solvent Mixtures 180
7.4 Implementation 183
7.4.1 Design and Selection of Pure Aqueous Amine Solvents 183
7.4.2 Selection of Amine Mixtures 185
7.5 Results and Discussion 187
7.5.1 Pure Solvents 187
7.5.2 Solvent Mixtures 192
7.6 Conclusions 196
List of Abbreviations 196
Acknowledgements 197
References 197
8 Ionic Liquid Design for Biomass-based Tri-generation System with Carbon
Capture 203
Fah Keen Chong, Viknesh Andlappan, Fadwa T. Eljack, Dominic C. Y Foo,
Nishanth G. Chemmangattuvalappil, and Denny K. S. Ng
8.1 Introduction 203
8.1.1 Bio-energy and Carbon Capture and Storage (BECCS) 203
8.1.2 Ionic Liquids 204
8.2 Formulations to Design Ionic Liquid for BECCS 205
8.2.1 Input-Output Modelling for Bio-energy Production 206
8.2.2 Disjunctive Programming for Discretization of Continuous
Variables 207
8.2.3 Optimal Ionic Liquid Design Formulation 208
8.3 An Illustrative Example 212
8.4 Conclusions 221
List of Abbreviations 222
References 225
Section 2 From Materials to Process Modelling, Design and
Intensification 229
9 Multi-scale Process Systems Engineering for Carbon Capture, Utilization,
and Storage: A Review 231
M. M. Faruque Hasan
9.1 Introduction 231
9.2 Multi-scale Approaches for CCUS Design and Optimization 233
9.3 Hierarchical Approaches 234
9.3.1 Materials Screening 235
9.3.2 Process Simulation and Optimization 236
9.3.3 CCUS Network Optimization 237
9.4 Simultaneous Approaches 237
9.4.1 Materials Screening and Process Optimization 237
9.4.2 Materials Screening, Process Optimization, and Process
Technology Selection 240
9.4.3 Multi-scale CCUS Design: Simultaneous Materials Screening,
Process Optimization, and Supply Chain Optimization 241
9.5 Enabling Methods, Challenges, and Research Opportunities 242
9.5.1 Developing Reduced Order/Surrogate Models 242
9.5.2 Developing Multi-scale High-fidelity Simulation Tools 242
9.5.3 Addressing Uncertainty 242
List of Abbreviations 243
References 244
10 Membrane System Design for C02 Capture: From Molecular Modeling
to Process Simulation 249
Xuezhong He, Daniel R. Nieto, Arne Lindbrathen, and May֊Britt Hagg
10.1 Introduction 249
10.2 Membranes for Gas Separation 250
10.2.1 Membrane Materials 250
10.2.2 Separation Principles 251
10.2.3 Membranes for C02 Separation 253
10.3 Molecular Modeling of Gas Separation in Membranes 255
10.3.1 Variables Influencing Transport Properties in Molecular Modeling 255
10.3.2 Computational Models 256
10.3.3 Molecular Modeling Validation 259
10.3.4 Software and Potentials 259
10.4 Process Simulation of Membranes for C02 Capture 260
10.4.1 Process Description and Simulation Basis 260
10.4.2 Cost Model 262
10.4.3 Criteria on Energy Consumption 265
10.4.4 Simulation Software 266
10.4.5 Process Design 266
10.4.6 Techno-economic Feasibility Analysis 270
Contents
10.4.7 Sensitivity Analysis 272
10.5 Future Perspectives 273
List of Abbreviations 274
Acknowledgments 276
References 276
11 Post-combustion C02 Capture by Chemical Gas-Liquid Absorption:
Solvent Selection, Process Modelling, Energy Integration and Design
Methods 283
Thibaut Neveux, Yann Le Moullec, and Eric Favre
11.1 Introduction 283
11.2 Solvent Influence 284
11.3 Process Modelling 286
11.3.1 Thermodynamic Equilibria Modelling 287
11.3.2 Necessity of a Rate-based Approach 287
11.3.3 Model Validation 289
11.4 Process Integration 291
11.4.1 Evaluating the Overall Energy Penalty 293
11.4.2 Integration Between the Capture Process and the Power Plant 294
11.4.3 Integration Within the Capture Process: Flow Scheme
Modifications 296
11.4.4 Example of Process Comparison 299
11.5 Design Method 300
11.5.1 Economic Criterion for Design Purpose 301
11.5.2 Sensitivity Analysis 302
11.5.3 Optimization as a Systematic Design Tool 304
11.5.4 Example of Optimization Results for Five Processes 305
11.6 Conclusion 306
List of Abbreviations 308
References 308
12 Innovative Computational Tools and Models for the Design, Optimization
and Control of Carbon Capture Processes 311
David C. Miller, Deb Agarwal, Debangsu Bhattacharyya, Joshua Boverhof,
Yang Chen, John Eslick, Jim Leek, Jinliang Ma, Priyadarshi Mahapatra,
Brenda Ng, Nikolaos V. Sahinidis, Charles Tong, and Stephen E Zitney
12.1 Overview 311
12.2 Advanced Computational Frameworks 313
12.2.1 Framework for Optimization, Quantification of Uncertainty,
and Surrogates 313
12.2.2 Advanced Process Control Framework 323
12.3 Case Study: Solid Sorbent Carbon Capture System 326
12.3.1 Process Models (BFB) 326
12.3.2 Process Topology via Superstructure and Algebraic
Surrogate Models 327
12.3.3 Simulation-based Optimization with Simultaneous Heat Integration 328
12.3.4 Uncertainty Quantification 330
12.3.5 Dynamic Reduced Models from Rigorous Process Models 331
12.3.6 Advanced Process Control 332
12.4 Summary 335
Acknowledgment 338
List of Abbreviations 338
References 339
13 Modelling and Optimization of Pressure Swing Adsorption (PSA) Processes
for Post-combustion C02 Capture from Flue Gas 343
George N. Nikolaidis, Eustathios S. Kikkinides, and Michael C. Georgiadis
13.1 Introduction 343
13.2 Mathematical Model Formulation 346
13.2.1 Problem Statement 346
13.2.2 Mathematical Model 347
13.2.3 Process Performance Indicators 351
13.2.4 Numerical Solution 351
13.3 PSA/VSA Simulation Case Studies 352
13.3.1 Model Validation 352
13.3.2 Parametric Analysis 355
13.4 PSA/VSA Optimization Case Study 359
13.4.1 Formulation of the Optimization Problem 359
13.4.2 Optimization Results 360
13.5 Conclusions 362
List of Abbreviations 365
Acknowledgements 366
References 367
14 Joule Thomson Effect in a Two-dimensional Multi-component Radial
Crossflow Hollow Fiber Membrane Applied for C02 Capture in Natural
Gas Sweetening 371
Serene Sow Mun Lock, Kok Keong Lauf Azmi Mohd Shariff,
and Yin Fong Yeong
14.1 Introduction 371
14.2 Methodology 373
14.2.1 Mathematical Modeling 373
14.2.2 Simulation Methodology 380
14.2.3 Experimental Methodology 382
14.3 Results and Discussion 384
14.3.1 Validation of Simulation Model 384
14.3.2 Temperature and Membrane Permeance Profile 385
14.3.3 CO2 Residue Composition and Percentage Hydrocarbon Loss 388
14.3.4 Compressor Power and Stage Cut 390
14.3.5 Gas Processing Cost 392
14.4 Conclusion 393
List of Abbreviations 394
Acknowledgments 394
References 394
xii I Contents
15 The Challenge of Reducing the Size of an Absorber Using a Rotating
Packed Bed 399
Ming-Tsz Chen, David Shan Hill Wong, and Chung Sung Tan
15.1 Motivation for Size Reduction 399
15.2 Rotating Packed Red Technology 401
15.3 Experimental Work on CO2 Capture Using a Rotating
Packed Bed 405
15.4 Modeling of CO2 Capture using a Rotating Packed Bed 409
15.5 Design of Rotating Packed Bed Absorbers and Real Work Comparison
to Regular Packed Absorbers 410
15.6 Conclusions 417
List of Abbreviations 417
References 418
Section 3 Process Operation and Control 425
16 Plantwide Design and Operation of C02 Capture Using Chemical
Absorption 427
David Shan Hill Wong and Shi-Shang Jang
16.1 Introduction 427
16.2 The Basic Process 428
16.3 Solvent Selection 429
16.4 Energy Consumption Targets 429
16.5 Steady-state Process Modeling 431
16.6 Conceptual Process Integration 432
16.7 Column Internals 432
16.8 Dynamic Modeling 433
16.9 Plantwide Control 434
16.10 Flexible Operation 434
16.11 Water and Amine Management 435
16.12 SOx Treatment 436
16.13 Monitoring 436
16.14 Conclusions 437
List of Abbreviations 437
References 437
17 Multi-period Design of Carbon Capture Systems for Flexible
Operation 447
Niai Mac Dowell and Nilay Shah
17.1 Introduction 447
17.2 Evaluation of Flexible Operation 4SI
17.2.1 Load Following 451
17.2.2 Solvent Storage 453
17.2.3 Exhaust Gas Venting 454
17*2*4 Time-varying Solvent Regeneration 454
17.3 Scenario Comparison 457
17.4 Conclusions 459
List of Abbreviations 460
Acknowledgements 460
References 461
18 Improved Design and Operation of Post-combustion C02 Capture Processes
with Process Modelling 463
Adekola Lawal, Javier Rodriguez, Alfredo Ramos, Gerardo Sanchis, Mario Calado,
Nouri Samsatii, Eni Oko, and Meihong Wang
18.1 Introduction 463
18.2 The gCCS Whole-chain System Modelling Environment 464
18.2.1 Modelling Reactive Absorption Processes 464
18.2.2 gSAFT Thermodynamics 465
18.3 Typical Process Design Considerations in a Simulation Study 467
18.3.1 Process Steam Requirements 467
18.3.2 Steam Extraction Location 467
18.3.3 Absorber Performance Factors 471
18.3.4 Solvent Selection/Design 471
18.3.5 Part-load Considerations 473
18.3.6 Extreme Weather Conditions 475
18.3.7 Process Design for Flexible Operation 476
18.3.8 Water Balance 476
18.4 Safety Considerations: Anticipating Hazards 477
18.4.1 Configuration Data 477
18.4.2 Unplanned Shut-down at Injection Site 477
18.4.3 Loss of Upstream Compression 478
18.4.4 Additional Hazards for Consideration 479
18.5 Process Operating Considerations 479
18.5.1 CO2 Capture Plant Control Systems 479
18.5.2 Start-up and Shut-down 483
18.5.3 Load-following Operations 483
18.6 Conclusions 497
List of Abbreviations 498
References 498
19 Advanced Control Strategies for IGCC Plants with Membrane Reactors
for C02 Capture 501
Fernando V. Lima, Xin He, RishiAmrit, and Prodromos Daoutidis
19.1 Introduction 501
19.2 Modelling Approach 503
19.2.1 Simplified IGCC Model 503
19.2.2 Membrane Reactor Model 504
19.2.3 Integrated IGCC-MR Process Model 506
xiv I Contents
19.3 Design and Simulation Conditions 507
19.3.1 Simulation Setup 507
19.3.2 Control Structure and Scenarios 508
19.4 Model Predictive Control Strategies 508
19.4.1 Linear MPC Approach: DMC 509
19.4.2 Nonlinear MPC Approach 511
19.5 Closed-loop Simulation Results 512
19.6 Conclusions 518
List of Abbreviations 518
Acknowledgements 519
References 519
20 An Integration Framework for C02 Capture Processes 523
M. Hossein Sahraei and Luis A. Ricardez-Sandovai
20.1 Introduction 523
20.2 Automation Framework and Syntax 525
20.3 CO2 Capture Plant Model 528
20.4 Case Studies 530
20.4.1 Controllability Analysis 530
20.4.2 Optimal Process Scheduling 533
20.4.3 Simultaneous Design and Control 537
20.5 Conclusions 540
List of Abbreviations 541
References 541
21 Operability Analysis in Solvent-based Post-combustion
C02 Capture Plants 545
Theodoros Damartzis, Athanasios I. Papadopoulos,
and Panos Seferlis
21.1 Introduction 545
21.2 Framework for the Analysis of Operability 548
21.2.1 Disturbance Rejection Analysis 548
21.2.2 Application to C02 Capture Processes 549
21.3 Framework Implementation 552
21.3.1 Employed C02 Capture Solvents 552
21.3.2 Employed Flowsheet Configurations 553
21.3.3 Disturbance Scenario and Problem Solution 555
21.4 Results and Discussion 556
21.4.1 Operability Analysis of CF Configuration 556
21.4.2 Operability Analysis of DSS-ICA Configuration 560
21.4.3 Economic Performance 564
21.5 Conclusions 566
List of Abbreviations 567
Acknowledgments 567
References 567
Contents XV
Section 4 Integrated Technologies 571
22 Process Systems Engineering for Optimal Design and Operation
of Oxycombustion 573
Alexander Mitsos
22.1 Introduction 573
22.2 Pressurized Oxycombustion of Coal 575
22.2.1 Optimal Design and Operation 575
22.2.2 Ideal Flexibility of Pressurized Oxycombustion 578
22.3 Membrane-based Processes 578
22.3.1 Need for Detailed Modeling 580
22.3.2 Optimal Reactor Design 581
22.3.3 Optimal Process Design 582
22.3.4 Integration with Seawater Desalination 583
22.3.5 Integration with Renewable Energy 584
22.4 Conclusions and Future Work 585
List of Abbreviations 585
Acknowledgments 585
References 586
23 Energy Integration of Processes for Solid Looping C02 Capture Systems 589
Pilar Lisbona, Yolanda Laraf Ana Martinez, and Luis M. Romeo
23.1 Introduction 589
23.2 Internal Integration for Energy Savings 592
23.2.1 Solids Preheating 592
23.2.2 Carbonator as a Heat Source 594
23.2.3 External Heat Sources 595
23.2.4 Comparative Analysis 597
23.3 External Integration for Energy Use 597
23.4 Process Symbiosis 601
23.4.1 In situ Pre-combustion Capture Technologies Integration
with Ca-looping 601
23.4.2 In situ Integration of the Ca-looping Process with Industrial
Cement Production 604
23.5 Final Remarks 605
List of Abbreviations 605
References 605
24 Process Simulation of a Dual-stage Selexol Process for Pre-combustion Carbon
Capture at an Integrated Gasification Combined Cycle Power Plant 609
Hyungwoong Ahn
24.1 Introduction 609
24.2 Configuration of an Absorption Process
for Pre-combustion Carbon Capture 610
24.3 Solubility Model 616
xvi Contents
24.4 Conventional Dual-stage Selexol Process 619
24.5 Unintegrated Solvent Cycle Design 624
24.6 95% Carbon Capture Efficiency 625
24.7 Conclusions 626
List of Abbreviations 627
References 627
25 Optimized Lignite-fired Power Plants with Post-combustion C02 Capture 629
Emmanouif K. Kakaras, Antonios K. Koumanakos, and Aggelos F. Doukelis
25.1 Introduction 629
25.2 Reducing the Energy Efficiency Penalty 630
25.2.1 Steam Thermodynamic Characteristics 630
25.2.2 Lignite Pre-drying 630
25.3 Optimized Plants with Amine Scrubbing: Greenfield Case 631
25.3.1 General Assumptions 631
25.3.2 Reference Power Plant 633
25.3.3 Lignite Power Plant with Post-combustion Capture with Amine
Scrubbing 633
25.4 Oxyfuel and Amine Scrubbing Hybrid C02 Capture 635
25.4.1 Technology Description 635
25.4.2 Reference Case: Existing Plant 638
25.4.3 Plant with Hybrid C02 Capture System 640
25.5 Conclusions 645
List of Abbreviations 645
References 645
Index 649
PROCESS SYSTEMS
AND MATERIALS FOR
CO2 CAPTURE
MODELLING, DESIGN, CONTROL
AND INTEGRATION
Edited by
ATHANASIOS I. PAPADOPOULOS, Chemical Process and Energy Resources Institute, Centre for
Research and Technology Hellas, Greece
PANOS SEFERLIS, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece
Computer-aided approaches enable the fast, automated and accurate evaluation of a vast number of
process and material characteristics that lead to economically efficient and sustainable C02 capture
systems. In this context, they offer a promising route to exploit experimental know-how and guide the
search for novel and efficient C02 capture processes and materials.
This comprehensive volume brings together an extensive collection of systematic computer-aided tools
and methods developed in recent years for C02 capture applications, and presents a structured and
organized account of works from internationally acknowledged scientists and engineers, through:
• modelling of materials and processes based on chemical and physical principles
• design of materials and processes based on systematic optimization methods
• utilization of advanced control and integration methods in process and plant-wide operations.
The tools and methods described are illustrated through case studies on materials such as solvents,
adsorbents and membranes, and on processes such as absorption/desorption, pressure and vacuum
swing adsorption, membranes, oxycombustion, solid looping, etc.
Process Systems and Materials for C02 Capture: Modelling, Design, Control and Integration should
become the essential introductory resource for researchers and industrial practitioners in the field
of C02 capture technology who wish to explore developments in computer-aided tools and methods.
In addition, it aims to introduce C02 capture technologies to process systems engineers working in
the development of general computational tools and methods by highlighting opportunities for new
developments to address the needs and challenges in C02 capture technologies.
Cover Design: Wiley
Cover Images: Getty and shutterstock
www.wiley.com
Wiley
Also available
as an e-book
SBN 978-1-119-10644-9
781
19 106449
|
any_adam_object | 1 |
author2 | Papadopoulos, Athanasios I. 1977- Seferlis, Panos 1967- |
author2_role | edt edt |
author2_variant | a i p ai aip p s ps |
author_GND | (DE-588)1137885025 (DE-588)1138057630 |
author_facet | Papadopoulos, Athanasios I. 1977- Seferlis, Panos 1967- |
building | Verbundindex |
bvnumber | BV044419666 |
callnumber-first | S - Agriculture |
callnumber-label | SD387 |
callnumber-raw | SD387.C37 |
callnumber-search | SD387.C37 |
callnumber-sort | SD 3387 C37 |
callnumber-subject | SD - Forestry |
classification_rvk | VN 5430 |
ctrlnum | (OCoLC)1024100054 (DE-599)BVBBV044419666 |
dewey-full | 628.5/3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 628 - Sanitary engineering |
dewey-raw | 628.5/3 |
dewey-search | 628.5/3 |
dewey-sort | 3628.5 13 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Bauingenieurwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02385nam a2200529 c 4500</leader><controlfield tag="001">BV044419666</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180220 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170721s2017 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016051990</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119106449</subfield><subfield code="9">978-1-119-10644-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1024100054</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044419666</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SD387.C37</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">628.5/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 5430</subfield><subfield code="0">(DE-625)147568:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Process systems and materials for CO2 capture</subfield><subfield code="b">modelling, design, control and integration</subfield><subfield code="c">edited by Athanasios I. Papadopoulos and Panos Seferlis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxviii, 658 pages</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Umwelt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon sequestration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequestration (Chemistry)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide</subfield><subfield code="x">Environmental aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combustion gases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Greenhouse gas mitigation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Carbon dioxide capture and storage</subfield><subfield code="0">(DE-588)7628985-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Carbon dioxide capture and storage</subfield><subfield code="0">(DE-588)7628985-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Carbon dioxide capture and storage</subfield><subfield code="0">(DE-588)7628985-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papadopoulos, Athanasios I.</subfield><subfield code="d">1977-</subfield><subfield code="0">(DE-588)1137885025</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seferlis, Panos</subfield><subfield code="d">1967-</subfield><subfield code="0">(DE-588)1138057630</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-1-119-10642-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029821296&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029821296&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029821296</subfield></datafield></record></collection> |
id | DE-604.BV044419666 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:52:28Z |
institution | BVB |
isbn | 9781119106449 |
language | English |
lccn | 016051990 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029821296 |
oclc_num | 1024100054 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | xxviii, 658 pages |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Wiley |
record_format | marc |
spelling | Process systems and materials for CO2 capture modelling, design, control and integration edited by Athanasios I. Papadopoulos and Panos Seferlis Hoboken, NJ Wiley 2017 xxviii, 658 pages txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Umwelt Carbon sequestration Sequestration (Chemistry) Carbon dioxide Environmental aspects Combustion gases Greenhouse gas mitigation Chemische Verfahrenstechnik (DE-588)4069941-9 gnd rswk-swf Carbon dioxide capture and storage (DE-588)7628985-0 gnd rswk-swf Carbon dioxide capture and storage (DE-588)7628985-0 s Chemische Verfahrenstechnik (DE-588)4069941-9 s DE-604 Papadopoulos, Athanasios I. 1977- (DE-588)1137885025 edt Seferlis, Panos 1967- (DE-588)1138057630 edt Erscheint auch als Online-Ausgabe, EPUB 978-1-119-10642-5 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029821296&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029821296&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Process systems and materials for CO2 capture modelling, design, control and integration Umwelt Carbon sequestration Sequestration (Chemistry) Carbon dioxide Environmental aspects Combustion gases Greenhouse gas mitigation Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Carbon dioxide capture and storage (DE-588)7628985-0 gnd |
subject_GND | (DE-588)4069941-9 (DE-588)7628985-0 |
title | Process systems and materials for CO2 capture modelling, design, control and integration |
title_auth | Process systems and materials for CO2 capture modelling, design, control and integration |
title_exact_search | Process systems and materials for CO2 capture modelling, design, control and integration |
title_full | Process systems and materials for CO2 capture modelling, design, control and integration edited by Athanasios I. Papadopoulos and Panos Seferlis |
title_fullStr | Process systems and materials for CO2 capture modelling, design, control and integration edited by Athanasios I. Papadopoulos and Panos Seferlis |
title_full_unstemmed | Process systems and materials for CO2 capture modelling, design, control and integration edited by Athanasios I. Papadopoulos and Panos Seferlis |
title_short | Process systems and materials for CO2 capture |
title_sort | process systems and materials for co2 capture modelling design control and integration |
title_sub | modelling, design, control and integration |
topic | Umwelt Carbon sequestration Sequestration (Chemistry) Carbon dioxide Environmental aspects Combustion gases Greenhouse gas mitigation Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Carbon dioxide capture and storage (DE-588)7628985-0 gnd |
topic_facet | Umwelt Carbon sequestration Sequestration (Chemistry) Carbon dioxide Environmental aspects Combustion gases Greenhouse gas mitigation Chemische Verfahrenstechnik Carbon dioxide capture and storage |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029821296&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029821296&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT papadopoulosathanasiosi processsystemsandmaterialsforco2capturemodellingdesigncontrolandintegration AT seferlispanos processsystemsandmaterialsforco2capturemodellingdesigncontrolandintegration |