Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations: VIASM 2016
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2017]
|
Schriftenreihe: | Lecture Notes in Mathematics
2183 |
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBA01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (VII, 228 Seiten) |
ISBN: | 9783319542089 |
ISSN: | 0075-8434 |
DOI: | 10.1007/978-3-319-54208-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044396971 | ||
003 | DE-604 | ||
005 | 20220208 | ||
007 | cr|uuu---uuuuu | ||
008 | 170705s2017 |||| o||u| ||||||eng d | ||
020 | |a 9783319542089 |c Online |9 978-3-319-54208-9 | ||
024 | 7 | |a 10.1007/978-3-319-54208-9 |2 doi | |
035 | |a (ZDB-2-SMA)9783319542089 | ||
035 | |a (ZDB-2-LNM)9783319542089 | ||
035 | |a (OCoLC)1002226361 | ||
035 | |a (DE-599)BVBBV044396971 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-523 |a DE-703 |a DE-863 |a DE-20 |a DE-739 |a DE-634 |a DE-862 |a DE-824 |a DE-384 |a DE-188 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations |b VIASM 2016 |c Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran ; edited by Hiroyoshi Mitake, Hung V. Tran |
246 | 1 | 3 | |a The second boundary value problem of the prescribed affine mean curvature equation and related linearized Monge-Ampère equation |
246 | 1 | 3 | |a Dynamical properties of Hamilton-Jacobi equations via the nonlinear adjoint method |
264 | 1 | |a Cham |b Springer |c [2017] | |
300 | |a 1 Online-Ressource (VII, 228 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 2183 |x 0075-8434 | |
505 | 8 | 0 | |t <<The>> second boundary value problem of the prescribed affine mean curvature equation and related linearized Monge-Ampère equation |r Nam Q. Le |t Dynamical properties of Hamilton-Jacobi equations via the nonlinear adjoint method |r Hiroyoshi Mitake and Hung V. Tran |
650 | 4 | |a Mathematics | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Differential geometry | |
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Le, Nam Q. |0 (DE-588)1138843458 |4 aut | |
700 | 1 | |a Mitake, Hiroyoshi |0 (DE-588)1138843318 |4 aut |4 edt | |
700 | 1 | |a Tran, Hung V. |0 (DE-588)1138843261 |4 aut |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-54207-2 |
830 | 0 | |a Lecture Notes in Mathematics |v 2183 |w (DE-604)BV014303148 |9 2183 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-54208-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-LNM | ||
940 | 1 | |q ZDB-2-SMA_2017 | |
940 | 1 | |q ZDB-2-LNM_2017 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029799105 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l BTU01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l FHR01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l FRO01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l FWS01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l FWS02 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l HTW01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l TUM01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l UBA01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l UBM01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l UBT01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l UBW01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l UEI01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-54208-9 |l UPA01 |p ZDB-2-LNM |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 651532 |
---|---|
_version_ | 1806181463232610304 |
any_adam_object | |
author | Le, Nam Q. Mitake, Hiroyoshi Tran, Hung V. |
author2 | Mitake, Hiroyoshi Tran, Hung V. |
author2_role | edt edt |
author2_variant | h m hm h v t hv hvt |
author_GND | (DE-588)1138843458 (DE-588)1138843318 (DE-588)1138843261 |
author_additional | Nam Q. Le Hiroyoshi Mitake and Hung V. Tran |
author_facet | Le, Nam Q. Mitake, Hiroyoshi Tran, Hung V. Mitake, Hiroyoshi Tran, Hung V. |
author_role | aut aut aut |
author_sort | Le, Nam Q. |
author_variant | n q l nq nql h m hm h v t hv hvt |
building | Verbundindex |
bvnumber | BV044396971 |
classification_rvk | SI 850 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-LNM |
contents | <<The>> second boundary value problem of the prescribed affine mean curvature equation and related linearized Monge-Ampère equation Dynamical properties of Hamilton-Jacobi equations via the nonlinear adjoint method |
ctrlnum | (ZDB-2-SMA)9783319542089 (ZDB-2-LNM)9783319542089 (OCoLC)1002226361 (DE-599)BVBBV044396971 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-54208-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03834nmm a2200721zcb4500</leader><controlfield tag="001">BV044396971</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220208 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170705s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319542089</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-54208-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-54208-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319542089</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-LNM)9783319542089</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1002226361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044396971</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations</subfield><subfield code="b">VIASM 2016</subfield><subfield code="c">Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran ; edited by Hiroyoshi Mitake, Hung V. Tran</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">The second boundary value problem of the prescribed affine mean curvature equation and related linearized Monge-Ampère equation</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Dynamical properties of Hamilton-Jacobi equations via the nonlinear adjoint method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 228 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2183</subfield><subfield code="x">0075-8434</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t"><<The>> second boundary value problem of the prescribed affine mean curvature equation and related linearized Monge-Ampère equation</subfield><subfield code="r">Nam Q. Le</subfield><subfield code="t">Dynamical properties of Hamilton-Jacobi equations via the nonlinear adjoint method</subfield><subfield code="r">Hiroyoshi Mitake and Hung V. Tran</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Le, Nam Q.</subfield><subfield code="0">(DE-588)1138843458</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitake, Hiroyoshi</subfield><subfield code="0">(DE-588)1138843318</subfield><subfield code="4">aut</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tran, Hung V.</subfield><subfield code="0">(DE-588)1138843261</subfield><subfield code="4">aut</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-54207-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Mathematics</subfield><subfield code="v">2183</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">2183</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2017</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-LNM_2017</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029799105</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-54208-9</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044396971 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T12:41:11Z |
institution | BVB |
isbn | 9783319542089 |
issn | 0075-8434 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029799105 |
oclc_num | 1002226361 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-384 DE-188 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-384 DE-188 |
physical | 1 Online-Ressource (VII, 228 Seiten) |
psigel | ZDB-2-SMA ZDB-2-LNM ZDB-2-SMA_2017 ZDB-2-LNM_2017 |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer |
record_format | marc |
series | Lecture Notes in Mathematics |
series2 | Lecture notes in mathematics |
spellingShingle | Le, Nam Q. Mitake, Hiroyoshi Tran, Hung V. Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations VIASM 2016 Lecture Notes in Mathematics <<The>> second boundary value problem of the prescribed affine mean curvature equation and related linearized Monge-Ampère equation Dynamical properties of Hamilton-Jacobi equations via the nonlinear adjoint method Mathematics Partial differential equations Differential geometry Calculus of variations Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Differential Geometry Mathematik |
title | Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations VIASM 2016 |
title_alt | The second boundary value problem of the prescribed affine mean curvature equation and related linearized Monge-Ampère equation Dynamical properties of Hamilton-Jacobi equations via the nonlinear adjoint method <<The>> second boundary value problem of the prescribed affine mean curvature equation and related linearized Monge-Ampère equation |
title_auth | Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations VIASM 2016 |
title_exact_search | Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations VIASM 2016 |
title_full | Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations VIASM 2016 Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran ; edited by Hiroyoshi Mitake, Hung V. Tran |
title_fullStr | Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations VIASM 2016 Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran ; edited by Hiroyoshi Mitake, Hung V. Tran |
title_full_unstemmed | Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations VIASM 2016 Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran ; edited by Hiroyoshi Mitake, Hung V. Tran |
title_short | Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations |
title_sort | dynamical and geometric aspects of hamilton jacobi and linearized monge ampere equations viasm 2016 |
title_sub | VIASM 2016 |
topic | Mathematics Partial differential equations Differential geometry Calculus of variations Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Differential Geometry Mathematik |
topic_facet | Mathematics Partial differential equations Differential geometry Calculus of variations Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Differential Geometry Mathematik |
url | https://doi.org/10.1007/978-3-319-54208-9 |
volume_link | (DE-604)BV014303148 |
work_keys_str_mv | AT lenamq dynamicalandgeometricaspectsofhamiltonjacobiandlinearizedmongeampereequationsviasm2016 AT mitakehiroyoshi dynamicalandgeometricaspectsofhamiltonjacobiandlinearizedmongeampereequationsviasm2016 AT tranhungv dynamicalandgeometricaspectsofhamiltonjacobiandlinearizedmongeampereequationsviasm2016 AT lenamq thesecondboundaryvalueproblemoftheprescribedaffinemeancurvatureequationandrelatedlinearizedmongeampereequation AT mitakehiroyoshi thesecondboundaryvalueproblemoftheprescribedaffinemeancurvatureequationandrelatedlinearizedmongeampereequation AT tranhungv thesecondboundaryvalueproblemoftheprescribedaffinemeancurvatureequationandrelatedlinearizedmongeampereequation AT lenamq dynamicalpropertiesofhamiltonjacobiequationsviathenonlinearadjointmethod AT mitakehiroyoshi dynamicalpropertiesofhamiltonjacobiequationsviathenonlinearadjointmethod AT tranhungv dynamicalpropertiesofhamiltonjacobiequationsviathenonlinearadjointmethod |