Understanding statistics and statistical myths: how to become a profound learner
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton, FL
CRC Press
[2016]
|
Schlagworte: | |
Beschreibung: | "A Productivity Press book." Vendor-supplied metadata |
Beschreibung: | 1 online resource |
ISBN: | 9781498727464 1498727468 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044360087 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170620s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781498727464 |9 978-1-4987-2746-4 | ||
020 | |a 1498727468 |9 1-4987-2746-8 | ||
035 | |a (ZDB-4-NLEBK)ocn928883548 | ||
035 | |a (OCoLC)928883548 | ||
035 | |a (DE-599)BVBBV044360087 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 519.5 |2 23 | |
100 | 1 | |a Castañeda-Méndez, Kicab |e Verfasser |4 aut | |
245 | 1 | 0 | |a Understanding statistics and statistical myths |b how to become a profound learner |c Kicab Castañeda-Méndez |
264 | 1 | |a Boca Raton, FL |b CRC Press |c [2016] | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a "A Productivity Press book." | ||
500 | |a Vendor-supplied metadata | ||
505 | 8 | |a Chapter 1. Myth 1 : Two types of data : attribute/discrete and measurement/continuous -- chapter 2. Myth 2 : proportions and percentages are discrete data -- chapter 3. Myth 3 : s = v (xi -- x)2/(n -1) is the correct -- chapter 4. Myth 4 : sample standard deviation -- chapter 5. Myth 5 : variances can be added but not standard deviations -- chapter 6. Myth 6 : parts and operators for an MSA do not have to be randomly selected -- chapter 7. Myth 7 : %study (% contribution, number of distinct categories) is the best criterion for evaluating a measurement system for process improvement -- chapter 8. Myth 8 : only sigma can compare different processes and metrics -- chapter 9. Myth 9 : capability is not percent/proportion of good units -- chapter 10. Myth 10 : p = probability of making an error -- chapter 11. Myth 11 : need more data for discrete data than continuous data analysis -- chapter 12. Myth 12 : nonparametric tests are less powerful than parametric tests -- | |
505 | 8 | |a chapter 13. Myth 13 : sample size of 30 is acceptable (for statistical significance) -- chapter 14. Myth 14 : can only fail to reject Ho, can never accept Ho -- chapter 15. Myth 15 : control limits are +3 standard deviations from the center line -- chapter 16. Myth 16 : control chart limits are empirical limits -- chapter 17. Myth 17 : control chart limits are not probability limits -- chapter 18. Myth 18 : +3 sigma limits are the most economical control chart limits -- chapter 19. Myth 19 : statistical inferences are inductive inferences -- chapter 20. Myth 20 : there is one universe or population if data are homogeneous -- chapter 21. Myth 21 : control charts are analytic studies -- chapter 22. Myth 22 : control charts are not tests of hypotheses -- chapter 23. Myth 23 : process needs to be stable to calculate process capability -- chapter 24. Myth 24 : specifications don't belong on control charts -- | |
505 | 8 | |a chapter 25. Myth 25 : identify and eliminate assignable or assignable causes of variation -- chapter 26. Myth 26 : process needs to be stable before you can improve it -- chapter 27. Myth 27 : stability (homogeneity) is required to establish a baseline -- chapter 28. Myth 28 : a process must be stable to be predictable -- chapter 29. Myth 29 : adjusting a process based on a single defect is tampering, causing increased process -- chapter 30. Myth 30 : no assumptions required when the data speak for themselves | |
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 7 | |a Problem solving / Statistical methods |2 fast | |
650 | 7 | |a Statistics |2 fast | |
650 | 4 | |a Statistik | |
650 | 4 | |a Statistics |a Problem solving |x Statistical methods | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Castaneda-Mendez, Kicab |t Understanding Statistics and Statistical Myths : How to Become a Profound Learner |d Boca Raton : CRC Press,c2015 |z 9781498727457 |
912 | |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029762718 |
Datensatz im Suchindex
_version_ | 1804177607262994432 |
---|---|
any_adam_object | |
author | Castañeda-Méndez, Kicab |
author_facet | Castañeda-Méndez, Kicab |
author_role | aut |
author_sort | Castañeda-Méndez, Kicab |
author_variant | k c m kcm |
building | Verbundindex |
bvnumber | BV044360087 |
collection | ZDB-4-NLEBK |
contents | Chapter 1. Myth 1 : Two types of data : attribute/discrete and measurement/continuous -- chapter 2. Myth 2 : proportions and percentages are discrete data -- chapter 3. Myth 3 : s = v (xi -- x)2/(n -1) is the correct -- chapter 4. Myth 4 : sample standard deviation -- chapter 5. Myth 5 : variances can be added but not standard deviations -- chapter 6. Myth 6 : parts and operators for an MSA do not have to be randomly selected -- chapter 7. Myth 7 : %study (% contribution, number of distinct categories) is the best criterion for evaluating a measurement system for process improvement -- chapter 8. Myth 8 : only sigma can compare different processes and metrics -- chapter 9. Myth 9 : capability is not percent/proportion of good units -- chapter 10. Myth 10 : p = probability of making an error -- chapter 11. Myth 11 : need more data for discrete data than continuous data analysis -- chapter 12. Myth 12 : nonparametric tests are less powerful than parametric tests -- chapter 13. Myth 13 : sample size of 30 is acceptable (for statistical significance) -- chapter 14. Myth 14 : can only fail to reject Ho, can never accept Ho -- chapter 15. Myth 15 : control limits are +3 standard deviations from the center line -- chapter 16. Myth 16 : control chart limits are empirical limits -- chapter 17. Myth 17 : control chart limits are not probability limits -- chapter 18. Myth 18 : +3 sigma limits are the most economical control chart limits -- chapter 19. Myth 19 : statistical inferences are inductive inferences -- chapter 20. Myth 20 : there is one universe or population if data are homogeneous -- chapter 21. Myth 21 : control charts are analytic studies -- chapter 22. Myth 22 : control charts are not tests of hypotheses -- chapter 23. Myth 23 : process needs to be stable to calculate process capability -- chapter 24. Myth 24 : specifications don't belong on control charts -- chapter 25. Myth 25 : identify and eliminate assignable or assignable causes of variation -- chapter 26. Myth 26 : process needs to be stable before you can improve it -- chapter 27. Myth 27 : stability (homogeneity) is required to establish a baseline -- chapter 28. Myth 28 : a process must be stable to be predictable -- chapter 29. Myth 29 : adjusting a process based on a single defect is tampering, causing increased process -- chapter 30. Myth 30 : no assumptions required when the data speak for themselves |
ctrlnum | (ZDB-4-NLEBK)ocn928883548 (OCoLC)928883548 (DE-599)BVBBV044360087 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03953nmm a2200433zc 4500</leader><controlfield tag="001">BV044360087</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170620s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781498727464</subfield><subfield code="9">978-1-4987-2746-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1498727468</subfield><subfield code="9">1-4987-2746-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-NLEBK)ocn928883548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)928883548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044360087</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Castañeda-Méndez, Kicab</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding statistics and statistical myths</subfield><subfield code="b">how to become a profound learner</subfield><subfield code="c">Kicab Castañeda-Méndez</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"A Productivity Press book."</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Vendor-supplied metadata</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 1. Myth 1 : Two types of data : attribute/discrete and measurement/continuous -- chapter 2. Myth 2 : proportions and percentages are discrete data -- chapter 3. Myth 3 : s = v (xi -- x)2/(n -1) is the correct -- chapter 4. Myth 4 : sample standard deviation -- chapter 5. Myth 5 : variances can be added but not standard deviations -- chapter 6. Myth 6 : parts and operators for an MSA do not have to be randomly selected -- chapter 7. Myth 7 : %study (% contribution, number of distinct categories) is the best criterion for evaluating a measurement system for process improvement -- chapter 8. Myth 8 : only sigma can compare different processes and metrics -- chapter 9. Myth 9 : capability is not percent/proportion of good units -- chapter 10. Myth 10 : p = probability of making an error -- chapter 11. Myth 11 : need more data for discrete data than continuous data analysis -- chapter 12. Myth 12 : nonparametric tests are less powerful than parametric tests -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">chapter 13. Myth 13 : sample size of 30 is acceptable (for statistical significance) -- chapter 14. Myth 14 : can only fail to reject Ho, can never accept Ho -- chapter 15. Myth 15 : control limits are +3 standard deviations from the center line -- chapter 16. Myth 16 : control chart limits are empirical limits -- chapter 17. Myth 17 : control chart limits are not probability limits -- chapter 18. Myth 18 : +3 sigma limits are the most economical control chart limits -- chapter 19. Myth 19 : statistical inferences are inductive inferences -- chapter 20. Myth 20 : there is one universe or population if data are homogeneous -- chapter 21. Myth 21 : control charts are analytic studies -- chapter 22. Myth 22 : control charts are not tests of hypotheses -- chapter 23. Myth 23 : process needs to be stable to calculate process capability -- chapter 24. Myth 24 : specifications don't belong on control charts -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">chapter 25. Myth 25 : identify and eliminate assignable or assignable causes of variation -- chapter 26. Myth 26 : process needs to be stable before you can improve it -- chapter 27. Myth 27 : stability (homogeneity) is required to establish a baseline -- chapter 28. Myth 28 : a process must be stable to be predictable -- chapter 29. Myth 29 : adjusting a process based on a single defect is tampering, causing increased process -- chapter 30. Myth 30 : no assumptions required when the data speak for themselves</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problem solving / Statistical methods</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield><subfield code="a">Problem solving</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Castaneda-Mendez, Kicab</subfield><subfield code="t">Understanding Statistics and Statistical Myths : How to Become a Profound Learner</subfield><subfield code="d">Boca Raton : CRC Press,c2015</subfield><subfield code="z">9781498727457</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029762718</subfield></datafield></record></collection> |
id | DE-604.BV044360087 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:50:46Z |
institution | BVB |
isbn | 9781498727464 1498727468 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029762718 |
oclc_num | 928883548 |
open_access_boolean | |
physical | 1 online resource |
psigel | ZDB-4-NLEBK |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | CRC Press |
record_format | marc |
spelling | Castañeda-Méndez, Kicab Verfasser aut Understanding statistics and statistical myths how to become a profound learner Kicab Castañeda-Méndez Boca Raton, FL CRC Press [2016] 1 online resource txt rdacontent c rdamedia cr rdacarrier "A Productivity Press book." Vendor-supplied metadata Chapter 1. Myth 1 : Two types of data : attribute/discrete and measurement/continuous -- chapter 2. Myth 2 : proportions and percentages are discrete data -- chapter 3. Myth 3 : s = v (xi -- x)2/(n -1) is the correct -- chapter 4. Myth 4 : sample standard deviation -- chapter 5. Myth 5 : variances can be added but not standard deviations -- chapter 6. Myth 6 : parts and operators for an MSA do not have to be randomly selected -- chapter 7. Myth 7 : %study (% contribution, number of distinct categories) is the best criterion for evaluating a measurement system for process improvement -- chapter 8. Myth 8 : only sigma can compare different processes and metrics -- chapter 9. Myth 9 : capability is not percent/proportion of good units -- chapter 10. Myth 10 : p = probability of making an error -- chapter 11. Myth 11 : need more data for discrete data than continuous data analysis -- chapter 12. Myth 12 : nonparametric tests are less powerful than parametric tests -- chapter 13. Myth 13 : sample size of 30 is acceptable (for statistical significance) -- chapter 14. Myth 14 : can only fail to reject Ho, can never accept Ho -- chapter 15. Myth 15 : control limits are +3 standard deviations from the center line -- chapter 16. Myth 16 : control chart limits are empirical limits -- chapter 17. Myth 17 : control chart limits are not probability limits -- chapter 18. Myth 18 : +3 sigma limits are the most economical control chart limits -- chapter 19. Myth 19 : statistical inferences are inductive inferences -- chapter 20. Myth 20 : there is one universe or population if data are homogeneous -- chapter 21. Myth 21 : control charts are analytic studies -- chapter 22. Myth 22 : control charts are not tests of hypotheses -- chapter 23. Myth 23 : process needs to be stable to calculate process capability -- chapter 24. Myth 24 : specifications don't belong on control charts -- chapter 25. Myth 25 : identify and eliminate assignable or assignable causes of variation -- chapter 26. Myth 26 : process needs to be stable before you can improve it -- chapter 27. Myth 27 : stability (homogeneity) is required to establish a baseline -- chapter 28. Myth 28 : a process must be stable to be predictable -- chapter 29. Myth 29 : adjusting a process based on a single defect is tampering, causing increased process -- chapter 30. Myth 30 : no assumptions required when the data speak for themselves MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Problem solving / Statistical methods fast Statistics fast Statistik Statistics Problem solving Statistical methods Erscheint auch als Druck-Ausgabe Castaneda-Mendez, Kicab Understanding Statistics and Statistical Myths : How to Become a Profound Learner Boca Raton : CRC Press,c2015 9781498727457 |
spellingShingle | Castañeda-Méndez, Kicab Understanding statistics and statistical myths how to become a profound learner Chapter 1. Myth 1 : Two types of data : attribute/discrete and measurement/continuous -- chapter 2. Myth 2 : proportions and percentages are discrete data -- chapter 3. Myth 3 : s = v (xi -- x)2/(n -1) is the correct -- chapter 4. Myth 4 : sample standard deviation -- chapter 5. Myth 5 : variances can be added but not standard deviations -- chapter 6. Myth 6 : parts and operators for an MSA do not have to be randomly selected -- chapter 7. Myth 7 : %study (% contribution, number of distinct categories) is the best criterion for evaluating a measurement system for process improvement -- chapter 8. Myth 8 : only sigma can compare different processes and metrics -- chapter 9. Myth 9 : capability is not percent/proportion of good units -- chapter 10. Myth 10 : p = probability of making an error -- chapter 11. Myth 11 : need more data for discrete data than continuous data analysis -- chapter 12. Myth 12 : nonparametric tests are less powerful than parametric tests -- chapter 13. Myth 13 : sample size of 30 is acceptable (for statistical significance) -- chapter 14. Myth 14 : can only fail to reject Ho, can never accept Ho -- chapter 15. Myth 15 : control limits are +3 standard deviations from the center line -- chapter 16. Myth 16 : control chart limits are empirical limits -- chapter 17. Myth 17 : control chart limits are not probability limits -- chapter 18. Myth 18 : +3 sigma limits are the most economical control chart limits -- chapter 19. Myth 19 : statistical inferences are inductive inferences -- chapter 20. Myth 20 : there is one universe or population if data are homogeneous -- chapter 21. Myth 21 : control charts are analytic studies -- chapter 22. Myth 22 : control charts are not tests of hypotheses -- chapter 23. Myth 23 : process needs to be stable to calculate process capability -- chapter 24. Myth 24 : specifications don't belong on control charts -- chapter 25. Myth 25 : identify and eliminate assignable or assignable causes of variation -- chapter 26. Myth 26 : process needs to be stable before you can improve it -- chapter 27. Myth 27 : stability (homogeneity) is required to establish a baseline -- chapter 28. Myth 28 : a process must be stable to be predictable -- chapter 29. Myth 29 : adjusting a process based on a single defect is tampering, causing increased process -- chapter 30. Myth 30 : no assumptions required when the data speak for themselves MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Problem solving / Statistical methods fast Statistics fast Statistik Statistics Problem solving Statistical methods |
title | Understanding statistics and statistical myths how to become a profound learner |
title_auth | Understanding statistics and statistical myths how to become a profound learner |
title_exact_search | Understanding statistics and statistical myths how to become a profound learner |
title_full | Understanding statistics and statistical myths how to become a profound learner Kicab Castañeda-Méndez |
title_fullStr | Understanding statistics and statistical myths how to become a profound learner Kicab Castañeda-Méndez |
title_full_unstemmed | Understanding statistics and statistical myths how to become a profound learner Kicab Castañeda-Méndez |
title_short | Understanding statistics and statistical myths |
title_sort | understanding statistics and statistical myths how to become a profound learner |
title_sub | how to become a profound learner |
topic | MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Problem solving / Statistical methods fast Statistics fast Statistik Statistics Problem solving Statistical methods |
topic_facet | MATHEMATICS / Applied MATHEMATICS / Probability & Statistics / General Problem solving / Statistical methods Statistics Statistik Statistics Problem solving Statistical methods |
work_keys_str_mv | AT castanedamendezkicab understandingstatisticsandstatisticalmythshowtobecomeaprofoundlearner |