Numerical methods for nonlinear variational problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York ; Berlin ; Heidelberg ; Tokyo
Springer
1984
|
Schriftenreihe: | Springer series in computational physics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 435 - 453 |
Beschreibung: | XIII, 493 Seiten 82 graph. Darst. 24 cm |
ISBN: | 0387124349 3540124349 9783662126158 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044356142 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 170620s1984 gw d||| |||| 00||| eng d | ||
015 | |a 84,A31,0411 |2 dnb | ||
016 | 7 | |a 840728042 |2 DE-101 | |
020 | |a 0387124349 |c Pp. |9 0-387-12434-9 | ||
020 | |a 3540124349 |c Pp. : DM 158.00 |9 3-540-12434-9 | ||
020 | |a 9783662126158 |c Pb. : EUR 85.59 (DE) (freier Pr.), EUR 87.99 (AT) (freier Pr.), sfr 106.50 (freier Pr.) |9 978-3-662-12615-8 | ||
035 | |a (DE-599)DNB840728042 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-706 | ||
084 | |a 530 |2 sdnb | ||
084 | |a 29 |2 sdnb | ||
084 | |a 520 |2 sdnb | ||
084 | |a 27 |2 sdnb | ||
100 | 1 | |a Glowinski, Roland |d 1937-2022 |e Verfasser |0 (DE-588)120514737 |4 aut | |
245 | 1 | 0 | |a Numerical methods for nonlinear variational problems |c Roland Glowinski |
264 | 1 | |a New York ; Berlin ; Heidelberg ; Tokyo |b Springer |c 1984 | |
300 | |a XIII, 493 Seiten |b 82 graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer series in computational physics | |
500 | |a Literaturverz. S. 435 - 453 | ||
650 | 0 | 7 | |a Nichtlineare Gleichung |0 (DE-588)4455337-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Variationsungleichung |0 (DE-588)4171762-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares Variationsproblem |0 (DE-588)4234622-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsungleichung |0 (DE-588)4187420-1 |2 gnd |9 rswk-swf |
653 | 0 | |a Nichtlineare Variationsungleichung | |
653 | 0 | |a Hydrodynamik | |
653 | 0 | |a Numerische Mathematik | |
653 | 0 | |a Numerische Mathematik | |
653 | 0 | |a Analysis | |
653 | 0 | |a Variationsrechnung | |
689 | 0 | 0 | |a Variationsungleichung |0 (DE-588)4187420-1 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare Variationsungleichung |0 (DE-588)4171762-4 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Nichtlineares Variationsproblem |0 (DE-588)4234622-8 |D s |
689 | 2 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Nichtlineare Gleichung |0 (DE-588)4455337-7 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u http://d-nb.info/840728042/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029758783&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029758783 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177600153649152 |
---|---|
adam_text | SOM
E PRELIMINAR
Y COMMENT
S XIV
CHAPTER
I
GENERALITIE
S ON ELLIPTI
C VARIATIONA
L INEQUALITIE
S AND O
N THEI
R
APPROXIMATIO
N 1
1. INTRODUCTIO
N 1
2. FUNCTIONA
L CONTEX
T 1
3. EXISTENC
E AN
D UNIQUENES
S RESULT
S FO
R EV
I O
F TH
E FIRS
T KIN
D 3
4
. EXISTENC
E AN
D UNIQUENES
S RESULT
S FO
R EV
I O
F TH
E SECON
D KIN
D 5
5. INTERNA
L APPROXIMATIO
N O
F EV
I O
F TH
E FIRS
T KIN
D 8
6. INTERNA
L APPROXIMATIO
N O
F EV
I O
F TH
E SECON
D KIN
D 12
7. PENALT
Y SOLUTIO
N O
F ELLIPTI
C VARIATIONA
L INEQUALITIE
S O
F TH
E FIRS
T KIN
D ..
. 15
8. REFERENCE
S 2
6
CHAPTER
II
APPLICATION OF THE FINITE ELEMENT METHOD TO THE APPROXIMATION OF
SOME SECOND-ORDER EVI 27
1. INTRODUCTIO
N 27
2. AN EXAMPLE OF EVI OF THE FIRST KIND
: THE OBSTACLE PROBLEM 27
3. A SECOND EXAMPLE OF EVI OF THE FIRST KIND
: THE ELASTO-PLASTIC TORSION
PROBLEM 41
4. A THIRD EXAMPLE OF EVI OF THE FIRST KIND
: A SIMPLIFIED SIGNORINI PROBLEM . 56
5. AN EXAMPLE OF EVI OF THE SECOND KIND
: A SIMPLIFIED FRICTION PROBLEM . . 68
6. A SECOND EXAMPLE OF EVI OF THE SECOND KIND
: THE FLOW OF A VISCOUS
PLASTIC FLUID IN A PIPE 78
7. ON SOME USEFUL FORMULA
E 96
CHAPTER
III
ON THE APPROXIMATION OF PARABOLIC VARIATIONAL INEQUALITIES 98
1. INTRODUCTION
: REFERENCES 98
2. FORMULATIO
N AND STATEMENT OF THE MAIN RESULTS 98
3. NUMERICAL SCHEMES FOR PARABOLIC LINEAR EQUATION
S 99
4. APPROXIMATION OF PVI OF THE FIRST KIND 101
HTTP://D-NB.INFO/840728042
5. APPROXIMATION OF PVI OF THE SECOND KIN
D 103
6. APPLICATION T
O A SPECIFIC EXAMPLE
: TIME-DEPENDENT FLOW OF A BINGHAM
FLUID IN A CYLINDRICAL PIPE 104
CHAPTER
IV
APPLICATION
S OF ELLIPTI
C VARIATIONA
L INEQUALIT
Y METHOD
S T
O THE SOLUTIO
N
O
F SOM
E NONLINEA
R ELLIPTI
C EQUATION
S 110
1. INTRODUCTION 110
2. THEORETICAL AND NUMERICAL ANALYSIS OF SOME MILDLY NONLINEAR ELLIPTIC
EQUATIONS 110
3. A SUBSONIC FLOW PROBLEM 134
CHAPTER
V
RELAXATIO
N METHOD
S AND APPLICATION
S 140
1. GENERALITIES 140
2. SOME BASIC RESULTS OF CONVEX ANALYSIS 140
3. RELAXATION METHODS FOR CONVEX FUNCTIONALS
: FINITE-DIMENSIONAL CASE . . 142
4. BLOCK RELAXATION METHODS 151
5. CONSTRAINED MINIMIZATION OF QUADRATI
C FUNCTIONALS IN HILBERT SPACES BY
UNDER AND OVER-RELAXATION METHODS
: APPLICATION 152
6. SOLUTION OF SYSTEMS OF NONLINEAR EQUATION
S BY RELAXATION METHODS . . . 163
CHAPTER
VI
DECOMPOSITION-COORDINATION METHOD
S BY AUGMENTED LAGRANGIAN
:
APPLICATIONS 166
1. INTRODUCTIO
N 166
2. PROPERTIES OF (P) AND OF THE SADDLE POINTS OF .? AND
R
168
3. DESCRIPTION OF THE ALGORITHMS 170
4. CONVERGENCE OF AL
G 1 171
5. CONVERGENCE OF AL
G 2 179
6. APPLICATIONS 183
7. GENERAL COMMENTS 194
CHAPTER
VII
LEAST-SQUARE
S SOLUTION OF NONLINEAR PROBLEMS
: APPLICATION T
O NONLINEA
R
PROBLEM
S IN FLUID DYNAMIC
S 195
1. INTRODUCTION
: SYNOPSI
S 195
2
. LEAST-SQUARE
S SOLUTIO
N OF FINITE-DIMENSIONA
L SYSTEM
S OF EQUATION
S ..
. 195
3
. LEAST-SQUARE
S SOLUTIO
N OF A NONLINEA
R DIRICHLE
T MODE
L PROBLE
M . . . .19
8
4
. TRANSONI
C FLO
W CALCULATION
S B
Y LEAST-SQUARE
S AN
D FINIT
E ELEMEN
T METHOD
S . 21
1
5. NUMERICA
L SOLUTIO
N O
F TH
E NAVIER-STOKE
S EQUATION
S FO
R INCOMPRESSIBL
E
VISCOU
S FLUID
S B
Y LEAST-SQUARE
S AN
D FINIT
E ELEMEN
T METHOD
S 24
4
6. FURTHE
R COMMENT
S O
N CHAPTE
R VI
I AN
D CONCLUSIO
N 318
APPENDIX
I
A BRIEF INTRODUCTION TO LINEAR VARIATIONAL PROBLEMS 321
1. INTRODUCTION 321
2. A FAMILY OF LINEAR VARIATIONAL PROBLEMS 321
3. INTERNAL APPROXIMATION OF PROBLEM (P) 326
4. APPLICATION TO THE SOLUTION OF ELLIPTIC PROBLEMS FOR PARTIAL
DIFFERENTIAL
OPERATORS 330
5. FURTHE
R COMMENTS
: CONCLUSION 397
APPENDIX
II
A
FINITE ELEMEN
T METHO
D WITH UPWINDIN
G FOR SECOND-ORDE
R PROBLEM
S
WITH LARG
E FIRST
- ORDE
R TERM
S 399
1. INTRODUCTION 399
2. THE MODEL PROBLEM 399
3. A CENTERED FINITE ELEMENT APPROXIMATIO
N 400
4. A FINITE ELEMENT APPROXIMATION WITH UPWINDING 400
5. ON THE SOLUTION OF THE LINEAR SYSTEM OBTAINED BY UPWINDING 404
6. NUMERICAL EXPERIMENTS 404
7. CONCLUDING COMMENTS 414
APPENDIX
III
SOME COMPLEMENTS ON THE NAVIER-STOKE
S EQUATIONS AND THEIR
NUMERICAL TREATMEN
T 415
1. INTRODUCTION 415
2. FINITE ELEMENT APPROXIMATION OF THE BOUNDARY CONDITIO
N U = GONFIFG^
0 415
3. SOME COMMENTS ON THE NUMERICAL TREATMEN
T OF THE NONLINEA
R TERM (U YY V)U 416
4. FURTHE
R COMMENTS ON THE BOUNDARY CONDITIONS 417
5. DECOMPOSITION PROPERTIES OF THE CONTINUOU
S AND DISCRETE STOKES PROBLEMS
OF SEC. 4. APPLICATION TO THEIR NUMERICAL SOLUTION 425
6. FURTHE
R COMMENTS 430
SOME ILLUSTRATIONS FROM AN INDUSTRIAL APPLICATION 431
BIBLIOGRAPHY 435
GLOSSARY OF SYMBOLS 455
AUTHOR INDEX 463
SUBJECT INDEX 467
|
any_adam_object | 1 |
author | Glowinski, Roland 1937-2022 |
author_GND | (DE-588)120514737 |
author_facet | Glowinski, Roland 1937-2022 |
author_role | aut |
author_sort | Glowinski, Roland 1937-2022 |
author_variant | r g rg |
building | Verbundindex |
bvnumber | BV044356142 |
ctrlnum | (DE-599)DNB840728042 |
discipline | Physik Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03582nam a2200805 c 4500</leader><controlfield tag="001">BV044356142</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170620s1984 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">84,A31,0411</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">840728042</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387124349</subfield><subfield code="c">Pp.</subfield><subfield code="9">0-387-12434-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540124349</subfield><subfield code="c">Pp. : DM 158.00</subfield><subfield code="9">3-540-12434-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662126158</subfield><subfield code="c">Pb. : EUR 85.59 (DE) (freier Pr.), EUR 87.99 (AT) (freier Pr.), sfr 106.50 (freier Pr.)</subfield><subfield code="9">978-3-662-12615-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB840728042</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">29</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">520</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Glowinski, Roland</subfield><subfield code="d">1937-2022</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120514737</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical methods for nonlinear variational problems</subfield><subfield code="c">Roland Glowinski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; Berlin ; Heidelberg ; Tokyo</subfield><subfield code="b">Springer</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 493 Seiten</subfield><subfield code="b">82 graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in computational physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 435 - 453</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Gleichung</subfield><subfield code="0">(DE-588)4455337-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Variationsungleichung</subfield><subfield code="0">(DE-588)4171762-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares Variationsproblem</subfield><subfield code="0">(DE-588)4234622-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nichtlineare Variationsungleichung</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydrodynamik</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Numerische Mathematik</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Numerische Mathematik</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Variationsrechnung</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Variationsungleichung</subfield><subfield code="0">(DE-588)4171762-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineares Variationsproblem</subfield><subfield code="0">(DE-588)4234622-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Nichtlineare Gleichung</subfield><subfield code="0">(DE-588)4455337-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://d-nb.info/840728042/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029758783&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029758783</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044356142 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:50:39Z |
institution | BVB |
isbn | 0387124349 3540124349 9783662126158 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029758783 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XIII, 493 Seiten 82 graph. Darst. 24 cm |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Springer |
record_format | marc |
series2 | Springer series in computational physics |
spelling | Glowinski, Roland 1937-2022 Verfasser (DE-588)120514737 aut Numerical methods for nonlinear variational problems Roland Glowinski New York ; Berlin ; Heidelberg ; Tokyo Springer 1984 XIII, 493 Seiten 82 graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Springer series in computational physics Literaturverz. S. 435 - 453 Nichtlineare Gleichung (DE-588)4455337-7 gnd rswk-swf Nichtlineare Variationsungleichung (DE-588)4171762-4 gnd rswk-swf Nichtlineares Variationsproblem (DE-588)4234622-8 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Variationsungleichung (DE-588)4187420-1 gnd rswk-swf Nichtlineare Variationsungleichung Hydrodynamik Numerische Mathematik Analysis Variationsrechnung Variationsungleichung (DE-588)4187420-1 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Nichtlineare Variationsungleichung (DE-588)4171762-4 s 2\p DE-604 Nichtlineares Variationsproblem (DE-588)4234622-8 s 3\p DE-604 Variationsrechnung (DE-588)4062355-5 s 4\p DE-604 Numerische Mathematik (DE-588)4042805-9 s 5\p DE-604 Nichtlineare Gleichung (DE-588)4455337-7 s 6\p DE-604 B:DE-101 application/pdf http://d-nb.info/840728042/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029758783&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Glowinski, Roland 1937-2022 Numerical methods for nonlinear variational problems Nichtlineare Gleichung (DE-588)4455337-7 gnd Nichtlineare Variationsungleichung (DE-588)4171762-4 gnd Nichtlineares Variationsproblem (DE-588)4234622-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Variationsrechnung (DE-588)4062355-5 gnd Numerische Mathematik (DE-588)4042805-9 gnd Variationsungleichung (DE-588)4187420-1 gnd |
subject_GND | (DE-588)4455337-7 (DE-588)4171762-4 (DE-588)4234622-8 (DE-588)4128130-5 (DE-588)4062355-5 (DE-588)4042805-9 (DE-588)4187420-1 |
title | Numerical methods for nonlinear variational problems |
title_auth | Numerical methods for nonlinear variational problems |
title_exact_search | Numerical methods for nonlinear variational problems |
title_full | Numerical methods for nonlinear variational problems Roland Glowinski |
title_fullStr | Numerical methods for nonlinear variational problems Roland Glowinski |
title_full_unstemmed | Numerical methods for nonlinear variational problems Roland Glowinski |
title_short | Numerical methods for nonlinear variational problems |
title_sort | numerical methods for nonlinear variational problems |
topic | Nichtlineare Gleichung (DE-588)4455337-7 gnd Nichtlineare Variationsungleichung (DE-588)4171762-4 gnd Nichtlineares Variationsproblem (DE-588)4234622-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Variationsrechnung (DE-588)4062355-5 gnd Numerische Mathematik (DE-588)4042805-9 gnd Variationsungleichung (DE-588)4187420-1 gnd |
topic_facet | Nichtlineare Gleichung Nichtlineare Variationsungleichung Nichtlineares Variationsproblem Numerisches Verfahren Variationsrechnung Numerische Mathematik Variationsungleichung |
url | http://d-nb.info/840728042/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029758783&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT glowinskiroland numericalmethodsfornonlinearvariationalproblems |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis