The data science design manual:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2017]
|
Schriftenreihe: | Texts in computer science
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | xvii, 445 Seiten Illustrationen, Diagramme (farbig) 25. cm |
ISBN: | 9783319856636 9783319554433 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044353486 | ||
003 | DE-604 | ||
005 | 20230320 | ||
007 | t | ||
008 | 170619s2017 sz a||| |||| 00||| eng d | ||
016 | 7 | |a 1125643862 |2 DE-101 | |
020 | |a 9783319856636 |c softcover reprint |9 978-3-319-85663-6 | ||
020 | |a 9783319554433 |c (hbk.) circa EUR 56.70 (DE) |9 978-3-319-55443-3 | ||
024 | 3 | |a 9783319554433 | |
035 | |a (OCoLC)1004334504 | ||
035 | |a (DE-599)DNB1125643862 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91G |a DE-11 |a DE-1050 |a DE-12 |a DE-863 |a DE-83 |a DE-1043 | ||
082 | 0 | |a 004 |2 23 | |
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a 004 |2 sdnb | ||
084 | |a DAT 620f |2 stub | ||
100 | 1 | |a Skiena, Steven S. |d 1961- |e Verfasser |0 (DE-588)172376823 |4 aut | |
245 | 1 | 0 | |a The data science design manual |c Steven S. Skiena |
264 | 1 | |a Cham, Switzerland |b Springer |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xvii, 445 Seiten |b Illustrationen, Diagramme (farbig) |c 25. cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Texts in computer science | |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
653 | |a UNF | ||
653 | |a Data Science | ||
653 | |a Data Analytics | ||
653 | |a Pattern Recognition | ||
653 | |a Analytical Statistics | ||
653 | |a Data Visualisation | ||
653 | |a Machine Learning | ||
689 | 0 | 0 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-55444-0 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=0c5a2b4b6b1e4e0d92bba65a273530ae&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029756206&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029756206 |
Datensatz im Suchindex
DE-BY-863_location | 1000 |
---|---|
DE-BY-FWS_call_number | 1000/ST 530 S628 |
DE-BY-FWS_katkey | 700679 |
DE-BY-FWS_media_number | 083101412034 |
_version_ | 1806529044956577792 |
adam_text |
Steven S Skiena
The Data Science Design Manual
a Springer
Contents
1 What is Data Science?
1 1 Computer Science, Data Science, and Real Science
1 2 Asking Interesting Questions from Data - - -4:5
121 The Baseball Encyclopedia 2222200000
122 The Internet Movie Database (IMDb)
123 Google Ngrams 2:2 eet
124 New York Taxi Records 202e ee eee
1 3 Properties of Data 2 sure nenne
131 Structured vs Unstructured Data 2220000
132 Quantitative vs Categorical Data 0
133 Big Data vs Little Data 6 ee ee eee
1 4 Classification and Regression 2 0020p eee ees
1 5 Data Science Television: The Quant Shop ---
15 1 Kaggle Challenges : - ee ee ee ee
1 6 About the War Stories 2220er een
1 7 War Story: Answering the Right Question -5-
1 8 Chapter Notes 202 ee eee
1 9 Exercises 2 ee
2 Mathematical Preliminaries
2 1 Probability 2 ee ee
211 Probability vs Statistics 6 ee ee
212 Compound Events and Independence -- -
213 Conditional Probability © 50440
214 Probability Distributions © 0 6 -- 6 ee ee
2 2 Descriptive Statistics 6 es
221 Centrality Measures eee ee ee es
222 Variability Measures 6 ee ee
223 Interpreting Variance 6 eee ee ee ees
224 Characterizing Distributions +25065
2 3 Correlation Analysis 2 00 0 ee
231 Correlation Coefficients: Pearson and Spearman Rank
232 The Power and Significance of Correlation
233 Correlation Does Not Imply Causation!
xi
xü
CONTENTS
234 Detecting Periodieities by Autocorrelation ++ 46
2 4 Logarithms 2 2 ee 47
241 Logarithms and Multiplying Probabilities ---- 48
242 Logarithms and Ratios -- ++ eee rete 48
243 Logarithms and Normalizing Skewed Distributions 49
2 5 War Story: Fitting Designer Genes 26-2 ee ee et 50
2 6 Chapter Notes © 6 eee ee ts 52
9 7 Exercises 0 ee ee ee eee 53
Data Munging 57
3 1 Languages for Data Science - 26 - eee ett 57
311 The Importance of Notebook Environments ---- 59
312 Standard Data Formats 2 ee ee ett 61
3 2 Collecting Data 6 et 64
321 Hunting - ee ee nn 64
322 Scraping 2 et 67
323 Logging - 1 eee et 68
3 3 Cleaning Data 22 2 eee eee 69
331 Errors vs Artifacts 2220 ee eee ee et 69
332 Data Compatibility - - eee eee et 72
333 Dealing with Missing Values - 2+ e ce 76
33 4 Outlier Detection 6 2 26 eee ee es 78
3 4 War Story: Beating the Market - 6-2 ee tres 79
3 5 Crowdsoureing --- ee te 80
351 The Penny Demo --- +++ ee eer ere 81
352 When isthe Crowd Wise? 6 0 eee ee rts 82
353 Mechanisms for Aggregation --- ++ see 83
354 Crowdsoureing Services +--+ eee er tre 84
355 Gamification 2 0 02 ee ee ee eet 88
3 6 Chapter Notes 2 2-0 eee eee es 90
3 7 Exercises -- eee te en nn 90
Scores and Rankings 95
4 1 The Body Mass Index (BMI) -- +--+ eee 96
4,2 Developing Scoring Systems - -- +--+ eee eer rte 99
421 Gold Standards and Proxies -- eee eee 99
422 Scores vs Rankings - +--+ eee eer ere 100
423 Recognizing Good Scoring Functions ---+-+-: 101
43 Z-scores and Normalization ----- ese eee rere 103
4 4 Advanced Ranking Techniques - - +--+ eee eters 104
441 Elo Rankings ---- 0 ee eeeeeeete 104
442 Merging Rankings ------ 2 eer ere ere 108
443 Digraph-based Rankings -- +--+ ++ rte 109
444 PageRank ---- +e eee ee etre 111
4 5 War Story: Clyde’s Revenge --- +--+ eer rere 111
4 6 Arrow’s Impossibility Theorem ------ rennen 114
CONTENTS xiii
4 7 War Story: Who’s Bigger? ee ee 115
4 8 Chapter Notes 26 ee ee ee 118
4 9 Exercises 2 eee 119
5 Statistical Analysis 121
5 1 Statistical Distributions 6 ee ee ee ee 122
511 The Binomial Distribution - - Herner 123
512 The Normal Distribution rec 2s eae 124
513 Implications of the Normal Distribution 126
514 Poisson Distribution - - 50 ee ee eee 127
515 Power Law Distributions - 6---- 0046 129
5 2 Sampling from Distributions -- 6 2222 5005- 132
521 Random Sampling beyond One Dimension 133
5 3 Statistical Significance 6 ee ee es 135
531 The Significance of Significance --- +54: 135
532 The T-test: Comparing Population Means 137
533 The Kolmogorov-Smirnov Test -- ----++5- 139
534 The Bonferroni Correction 1 2 000 eee eee 141
535 False Discovery Rate ee ee ee ees 142
5 4 War Story: Discovering the Fountain of Youth? - 143
5 5 Permutation Tests and P-values 2 022 eee eee 145
551 Generating Random Permutations - -- 147
552 DiMaggio’s Hitting Streak - 2-6 ee ee ees 148
5 6 Bayesian Reasoning 2 0+ eee eee eee 150
5 7 Chapter Notes 2 - cee ee ee ee eee 151
5 8 Exercises 0 ee 151
6 Visualizing Data 155
6 1 Exploratory Data Analysis 6 6 ete ee es 156
611 Confronting a New Data Set 2 6 ee ee ees 156
612 Summary Statistics and Anscombe’s Quartet 159
613 Visualization Tools 2 2 es 160
6 2 Developing a Visualization Aesthetic 6 602 eee 162
621 Maximizing Data-Ink Ratio 6 ee ee ee eee 163
622 Minimizing the Lie Factor 2-26 + ee ee eee 164
623 Minimizing Chartjunk 2 2 ee ee ee ee 165
624 Proper Scaling and Labeling - -- +--+ eee 167
625 Effective Use of Color and Shading - --5 168
626 The Power of Repetition 262 eee eee ee 169
6 3 Chart Types 2 0 ee eee ee ee es ee 170
631 Tabular Data 1 ee ee es 170
632 Dot and Line Plots - 50+ e eee eee 174
633 Scatter Plots 2 ee ee ee ee ee es 177
634 Bar Plots and Pie Charts 2 6 ee eee eee 179
635 Histograms 0 6 ee ee ee ee es 183
636 DataMaps 2 eee eee ee ee 187
xiv CONTENTS
6 4 Great Visualizations 220 es 189
641 Marey’s Train Schedule - 02 +22 e+ 189
642 Snow’s Cholera Map 0 0 ee ee eee 191
643 New York’s Weather Year 0 0 ee es 192
6 5 Reading Graphs 1 6 ee es 192
651 The Obseured Distribution 2 2 193
652 Overinterpreting Variance 2 een 193
6 6 Interactive Visualization 1 0 eee ee 195
6 7 War Story: TextMapping the World 6 220+ ere 196
6 8 Chapter Notes 2 0c ee ee es 198
6 9 Exercises 2 ee ee en 199
Mathematical Models 201
7 1 Philosophies of Modeling 2 cr rennen 201
71 1 Occam’sRazor - 2er nenenen 201
71 2 Bias-Variance Trade-Ofls 2 2 ee 202
713 What Would Nate Silver Do? 2 2 eee ee ee 203
72A Taxonomy of Models - -0- 0-0 ee teres 205
721 Linear vs Non-Linear Models 2 ---- 2-2 206
722 Blackbox vs Descriptive Models ---- +--+ 0 206
723 First-Prineiple vs Data-Driven Models + - 207
724 Stochastic vs Deterministic Models ------- 208
725 Flat vs Hierarchical Models 0 00 209
7 3 Baseline Models -- 20er es 210
731 Baseline Models for Classification - -----: 210
732 Baseline Models for Value Prediction - --+--- 212
7 4 Evaluating Models 2202 20 20 eee ees 212
74 1 Evaluating Classifiers - - 0-05 eee eee 213
742 Receiver-Operator Characteristic (ROC) Curves -- 218
743 Evaluating Multielass Systems - He + 219
744 Evaluating Value Prediction Models - ----- 221
75 Evaluation Environments --05+ 00+ eee 224
751 Data Hygiene for Evaluation - cc 225
752 Amplifying Small Evaluation Sets ec 226
7 6 War Story: 100% Accuracy 2 2 2e rennen 228
7 7 Simulation Models 2 00-2 ee et 229
7 8 War Story: Calculated Bets 0 0 20 0-5 eee 230
7 9 Chapter Notes 2 6 ee ee es 233
7 10 Exercises 2 0 ee ee es 234
Linear Algebra 237
8 1 The Power of Linear Algebra 222 02 + ees 237
811 Interpreting Linear Algebraic Formulae -----: 238
812 Geometry and Vectors --- 220522 ree 240
8 2 Visualizing Matrix Operations 2 2 -- 5-2 eee ee 241
821 Matrix Addition
CONTENTS xv
822 Matrix Multiplication 2 2202er 243
823 Applications of Matrix Multiplication 244
824 Identity Matrices and Inversion 2 22 2200 248
825 Matrix Inversion and Linear Systems 250
826 Matrix Rank 2 2 2222 nun 251
8 3 Factoring Matrices © ee ee 252
831 Why Factor Feature Matrices? © 000 00005 252
832 LU Decomposition and Determinants - 254
8 4 Eigenvalues and Higenvectors 0 eee ees 255
841 Properties of Higenvalues 2 6 0-2 + ee eee 255
842 Computing Higenvalues 1 0 ee ee ee ee 256
8 5 Eigenvalue Decomposition 2 eee ee es 257
851 Singular Value Decomposition - - 0055 258
852 Principal Components Analysis -+50--- 260
86 War Story: The Human Factors - 40 - ee eee eee 262
8 7 Chapter Notes 2 2 ee ee es 263
8 8 Exercises 6 0 ee 263
9 Linear and Logistic Regression 267
9 1 Linear Regression 2 6 ee ern 268
911 Linear Regression and Duality 0-005 268
912 Error in Linear Regression 1 eee ee eee 269
91 3 Finding the Optimal Fit -2 054200 270
9 2 Better Regression Models 1 26 eee eee eee ee 272
921 Removing Outliers 2 0 ee ee 272
922 Fitting Non-Linear Functions - 50-5 273
923 Feature and Target Scaling - -- 50-200 274
924 Dealing with Highly-Correlated Features - 277
9 3 War Story: Taxi Deriver ee ee ees 277
9 4 Regression as Parameter Fitting © -- 0 +4 eee ees 279
941 Convex Parameter Spaces 00002 eee eee 280
942 Gradient Descent Search 2222er 281
943 What isthe Right Leaming Rate? re 00 283
944 Stochastice Gradient Descent 2 2 00 285
9 5 Simplifying Models through Regularization vr er + 286
951 Ridge Regression ron nennen 286
952 LASSO Regression 6 ee eee ee ee es 287
953 Trade-Offs between Fit and Complexity - 288
9 6 Classification and Logistic Regression 1 sete eee 289
961 Regression for Classification ---- 2 eee eee 290
962 Decision Boundaries 2 ee ee ee es 291
963 Logistic Regression 6 eee ee es 292
9 7 Issues in Logistie Classification 2 eee eee eee 295
971 Balanced Training Classes creme 295
972 Multi-Class Classification 2222 297
973 Hierarchical Classification 6 ee ee ee ee 298
xvi CONTENTS
974 Partition Functions and Multinomial Regression - - 299
9 8 Chapter Notes 2 00 ee et es 300
9 9 Exercises 2 ee ee ees 301
10 Distance and Network Methods 303
10 1 Measuring Distances 6-6 eee ee es 303
10 1 1 Distance Metrics : 6 ee ee ee ee eee 304
10 1 2 The Lk Distance Metrie ee es 305
10 1 3 Working in Higher Dimensions rer cr 307
10 1 4 Dimensional Pgalitarianism 2-+- ++ eee 308
10 1 5 Points vs Vectols ee ee ee 309
10 1 6 Distances between Probability Distributions - 310
10 2 Nearest Neighbor Classification - - -- +e ee eee 311
10 2 1 Seeking Good Analogies re rerereen 312
10 2 2 k-Nearest Neighbors 2 6 02+ eee eee 313
10 2 3 Finding Nearest Neighbors rer ren 315
10 2 4 Locality Sensitive Hashing - --- +--+ e eee re 317
10 3 Graphs, Networks, and Distances ------ +e etre 319
10 3 1 Weighted Graphs and Induced Networks - --- 320
10 3 2 Talking About Graphs ernennen 321
10 3 3 Graph Theory -- 2-2-2 eee eee ees 323
10 4 PageRank 2 ee ee 325
10 5 Clustering - - ---- ee et 327
10 5 1 k-means Clustering -- ee rennen 330
10 5 2 Agglomerative Clustering - - ce rereee 336
10 5 3 Comparing Clusterings - - -- rer ee rennen 341
10 5 4 Similarity Graphs and Cut-Based Clustering - -- 341
10 6 War Story: Cluster Bombing 2 - 22 eee 344
10 7 Chapter Notes 2000 eee ee es 345
10 8 Exercises 2 ee ee ne 346
11 Machine Learning 351
11 1 Naive Bayes ee et 354
11 11 Formulation 2 ee ee ee et 354
11 1 2 Dealing with Zero Counts (Discounting) ---- 356
11 2 Decision Tree Classifiers - -- 2er eer rennen 357
11 2 1 Constructing Decision Trees 2-6-0 ee eee 359
11 2 2 Realizing Exclusive Or - ---sereeeeen 361
11 2 3 Ensembles of Decision Trees - -- rer 362
11 3 Boosting and Ensemble Learning -------- +++ -eere 363
11 3 1 Voting with Classifiers - --- eee eee eee 363
11 3 2 Boosting Algorithms ---- +--+ eee eee 364
11 4 Support Vector Machines 2 2-2-2 teeters 366
11 4 1 Linear SVMs 2-2-2 ee ee ee tt 369
11 4 2 Non-linear SVMs 0-6-2 ee ee ee ee ee 369
11 43 Kermels - 0 000 eee eee te eee 371
CONTENTS
11 5 Degrees of Supervision
11 5 1 Supervised Learning
11 5 2 Unsupervised Learning
11 5 3 Semi-supervised Learning
11 5 4 Feature Engineering
11 6 Deep Learning -
11 6 1 Networks and Depth
11 6 2 Backpropagation
11 6 3 Word and Graph Embeddings --+-46%
11 7 War Story: The Name Game
11 8 Chapter Notes 2
11 9 Exercises ---
12 Big Data: Achieving Scale
12 1 What is Big Data?
12 1 1 Big Data as Bad Data
12 1 2 The Three Vs
12 2 War Story: Infrastructure Matters
12 3 Algorithmics for Big Data
12 3 1 Big Oh Analysis
12 3 2 Hashing - -
12 3 3 Exploiting the Storage Hierarchy 05+
12 3 4 Streaming and Single-Pass
12 4 Filtering and Sampling -
Algorithms - - -
12 4 1 Deterministic Sampling Algorithms ---
12 4 2 Randomized and Stream Sampling -- --+--
12 5 Parallelism - - 4--
12 5 1 One, Two, Many
12 5 2 Data Parallelism
12 5 8 Grid Search
12 5 4 Cloud Computing Services
12 6 MapReduce vr
12 6 1 Map-Reduce Programming
12 6 2 MapReduce under the Hood - cr er
12 7 Societal and Ethical Implications
12 8 Chapter Notes 4 --
12 9 Exercises 2:20
13 Coda
13 1 Geta Job! - 2-
13 2 Go to Graduate School!
13 3 Professional Consulting Services
14 Bibliography |
any_adam_object | 1 |
author | Skiena, Steven S. 1961- |
author_GND | (DE-588)172376823 |
author_facet | Skiena, Steven S. 1961- |
author_role | aut |
author_sort | Skiena, Steven S. 1961- |
author_variant | s s s ss sss |
building | Verbundindex |
bvnumber | BV044353486 |
classification_rvk | ST 530 |
classification_tum | DAT 620f |
ctrlnum | (OCoLC)1004334504 (DE-599)DNB1125643862 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV044353486</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230320</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170619s2017 sz a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1125643862</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319856636</subfield><subfield code="c">softcover reprint</subfield><subfield code="9">978-3-319-85663-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319554433</subfield><subfield code="c">(hbk.) circa EUR 56.70 (DE)</subfield><subfield code="9">978-3-319-55443-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783319554433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1004334504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1125643862</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Skiena, Steven S.</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172376823</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The data science design manual</subfield><subfield code="c">Steven S. Skiena</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 445 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (farbig)</subfield><subfield code="c">25. cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in computer science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">UNF</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Analytics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Pattern Recognition</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytical Statistics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Visualisation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-55444-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=0c5a2b4b6b1e4e0d92bba65a273530ae&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029756206&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029756206</subfield></datafield></record></collection> |
id | DE-604.BV044353486 |
illustrated | Illustrated |
indexdate | 2024-08-05T08:45:50Z |
institution | BVB |
isbn | 9783319856636 9783319554433 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029756206 |
oclc_num | 1004334504 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-11 DE-1050 DE-12 DE-863 DE-BY-FWS DE-83 DE-1043 |
owner_facet | DE-91G DE-BY-TUM DE-11 DE-1050 DE-12 DE-863 DE-BY-FWS DE-83 DE-1043 |
physical | xvii, 445 Seiten Illustrationen, Diagramme (farbig) 25. cm |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer |
record_format | marc |
series2 | Texts in computer science |
spellingShingle | Skiena, Steven S. 1961- The data science design manual Data Science (DE-588)1140936166 gnd |
subject_GND | (DE-588)1140936166 |
title | The data science design manual |
title_auth | The data science design manual |
title_exact_search | The data science design manual |
title_full | The data science design manual Steven S. Skiena |
title_fullStr | The data science design manual Steven S. Skiena |
title_full_unstemmed | The data science design manual Steven S. Skiena |
title_short | The data science design manual |
title_sort | the data science design manual |
topic | Data Science (DE-588)1140936166 gnd |
topic_facet | Data Science |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=0c5a2b4b6b1e4e0d92bba65a273530ae&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029756206&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT skienastevens thedatasciencedesignmanual |
Beschreibung
THWS Würzburg Zentralbibliothek Lesesaal
Signatur: |
1000 ST 530 S628 |
---|---|
Exemplar 1 | ausleihbar Missing Vormerken |