The hierarchical finite cell method for problems in structural mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | German |
Veröffentlicht: |
Düsseldorf
VDI Verlag
[2017]
|
Ausgabe: | Als Manuskript gedruckt |
Schriftenreihe: | Fortschritt-Berichte VDI. Reihe 18, Mechanik, Bruchmechanik
Nr. 348 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 152 Seiten Illustrationen |
ISBN: | 9783183348183 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044350941 | ||
003 | DE-604 | ||
005 | 20181203 | ||
007 | t | ||
008 | 170614s2017 a||| m||| 00||| ger d | ||
020 | |a 9783183348183 |9 978-3-18-334818-3 | ||
035 | |a (OCoLC)992548700 | ||
035 | |a (DE-599)BVBBV044350941 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a ger | |
049 | |a DE-91G |a DE-83 |a DE-210 | ||
084 | |a UF 1800 |0 (DE-625)145565: |2 rvk | ||
084 | |a BAU 154d |2 stub | ||
100 | 1 | |a Joulaian, Meysam |e Verfasser |0 (DE-588)1133576958 |4 aut | |
245 | 1 | 0 | |a The hierarchical finite cell method for problems in structural mechanics |c Meysam Joulaian, M. SC., Hamburg |
246 | 1 | 3 | |a The hierarchical finite cell method |
250 | |a Als Manuskript gedruckt | ||
264 | 1 | |a Düsseldorf |b VDI Verlag |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a X, 152 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Fortschritt-Berichte VDI. Reihe 18, Mechanik, Bruchmechanik |v Nr. 348 | |
502 | |b Dissertation |c Technische Universität Hamburg-Harburg |d 2016 | ||
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strukturmechanik |0 (DE-588)4126904-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | 1 | |a Strukturmechanik |0 (DE-588)4126904-4 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Fortschritt-Berichte VDI. Reihe 18, Mechanik, Bruchmechanik |v Nr. 348 |w (DE-604)BV001902156 |9 348 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029753735&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029753735 |
Datensatz im Suchindex
_version_ | 1804177591641309184 |
---|---|
adam_text | C ONTENTS
N O TA TIO N V III
A B STRACT IX
Z USAM M ENTFASSUNG X
1 IN TROD U CTION 1
1.1 M
OTIVATION....................................................................................................................
1
1.2 SCOPE AND OUTLINE OF THIS W O R K
..................................................................................
4
2 F IN ITE CELL M ETH O D FOR PROBLEM S IN SOLID MECHANICS 5
2.1 THE STRONG AND WEAK FORM OF THE GOVERNING
EQUATIONS............................................. 5
2.2 THE FINITE ELEMENT METHOD
........................................................................................
7
2.3 MESH GENERATION AND THE FINITE CELL M
ETHOD............................................................... 10
2.4 NUMERICAL CHALLENGES OF THE FINITE CELL M ETH O D
........................................................
14
2.4.1 FAST ALGORITHMS TO INTRODUCE THE INDICATOR FU N C T IO N
................................... 14
2.4.2 IMPOSITION OF BOUNDARY
CONDITIONS...............................................................
15
2.4.2.1 NEUMANN BOUNDARY C O N D ITIO N S
..................................................
15
2A 2.2 DIRICHLET BOUNDARY CONDITIONS
.....................................................
15
2.4.3 NUMERICAL INTEGRATION OF CUT C E L L S
............................................................... 16
2.4.4 MATERIAL INTERFACES AND WEAK DISCONTINUITIES
...............................................
16
2.4.5 EFFICIENT ITERATIVE SO LV E RS
..............................................................................
16
2.5 SOME APPLICATIONS OF THE F C M
..................................................................................
17
2.5.1 ELASTOSTATIC ANALYSIS OF A ONE-DIMENSIONAL R O D
............................................
17
2.5.2 PERFORATED P LA TE
..................................................................................................
22
2.5.3 POROUS D O M A IN
..................................................................................................
25
3 N UM ERICAL INTEGRATION ALGORITHM S FOR TH E FC M 27
3.1 NUMERICAL INTEGRATION OF UNBROKEN C E L L S
......................................................................28
3.2 PERFORMANCE OF GAUSSIAN QUADRATURE RULES IN FACING DISCONTINUITIES
..........................
30
3.3 COMPOSED
INTEGRATION.....................................................................................................
30
3.3.1 COMPOSED INTEGRATION BASED ON CONFORMING LOCAL M ESHES
.............................
32
3.3.2 COMPOSED INTEGRATION BASED ON UNIFORM SUB-CELL DIVISION
.............................
33
3.3.3 COMPOSED INTEGRATION BASED ON SPACETREES
......................................................
35
3.3.4 RESOLUTION OF THE INTEGRATION M E S H
...................................................................36
3.3.5 COMPOSED INTEGRATION WITH AN /^-REFINEMENT PROCEDURE
................................
38
3.4 MOMENT FITTING M E TH O D
..................................................................................................
38
3.4.1 STEP 1: SELECTION OF THE BASIS FUNCTIONS
..........................................................39
3.4.2 STEP 2: SETTING UP THE POSITION OF THE QUADRATURE P O IN T S
................................
40
3.4.3 STEP 3: COMPUTATION OF THE RIGHT-HAND S I D E
...................................................
41
3.4.3.1 COMPUTING THE RIGHT-HAND SIDE ON B-REP M O D E L S
.......................
42
3.4.3.2 COMPUTING THE RIGHT-HAND SIDE ON VOXEL M O D E L S
.......................
44
3.4.3.3 COMPUTING THE RIGHT-HAND SIDE ON IMPLICITLY DESCRIBED GEOME
TRIES
...............................................................................................45
3.4.4 STEP 4 SOLVING THE EQUATION S Y S TE M
................................................................ 45
3.4.5 RECOVERY OF THE GAUSS QUADRATURE R U LE
.............................................................45
3.5 PERFORMANCE OF THE SUGGESTED NUMERICAL INTEGRATION SC H E M E
S....................................47
3.5.1 CELL CUT BY A PLANAR
SURFACE................................................................................47
3.5.2 CELL CUT BY SEVERAL PLANAR SU RFA C E
S................................................................... 49
3.5.3 CELL CUT BY A CURVED S U R F A C E
.............................................................................50
3.5.4 CELL CUT BY SEVERAL CURVED SURFACES
...................................................................
55
3.5.5 NUMERICAL INTEGRATION ON VOXEL M O D E L S
..........................................................57
3.6 PERFORMANCE OF THE NUMERICAL INTEGRATION METHODS IN THE F C M
..................................62
3.6.1 PERFORATED P LA TE
...................................................................................................62
3.6.2 SPHERE UNDER HYDROSTATIC STRESS S TA TE
................................................................ 64
3.6.3 POROUS DOMAIN UNDER P RE S S U RE
.........................................................................
69
4 LOCAL ENRICHM ENT O F TH E F C M 72
4.1 FCM FOR PROBLEMS WITH MATERIAL
INTERFACES....................................................................
72
4.2 LOCAL REFINEMENT AND ADAPTIVITY
...................................................................................
75
4.3 DESCRIBING MATERIAL INTERFACES USING THE LEVEL SET FU N CTIO N
..........................................
78
4.3.1 SMOOTH LEVEL SET FU N C TIO N
S................................................................................
79
4.3.2 NON-SMOOTH LEVEL SET
FUNCTIONS..........................................................................82
4.4 LOCAL ENRICHMENT WITH THE AID OF THE PU M ETH O D
..........................................................85
4.4.1 ENRICHMENT FUNCTION FOR PROBLEMS WITH MATERIAL IN TE RFA C E S
..........................
86
4.4.1.1 STABLE X F E M /G F E M
......................................................................
86
4.4.1.2 BLENDED ENRICH M EN
T..........................................................................88
4.5 LOCAL ENRICHMENT WITH THE AID OF THE HP-D M E TH O D
.......................................................90
4.6 SELECTION OF PROPER ENRICHMENT S T R A TE G Y
......................................................................
92
4.7 NUMERICAL EXAMPLES
......................................................................................................
93
4.7.1 ELASTOSTATIC ANALYSIS OF A BI-MATERIAL ONE-DIMENSIONAL RO D
...............................93
4.7.2 BI-MATERIAL PERFORATED PLATE WITH CURVED H O LE S
................................................
97
4.7.3 INTERPLAY BETWEEN THE FICTITIOUS DOMAIN AND THE ENRICHMENT Z O N E
.............
101
4.7.4 3D CUBE WITH CYLINDRICAL INCLUSION
.................................................................
105
4.7.5 HETEROGENEOUS MATERIAL
.................................................................................
108
5 T HE SP ECTRAL CELL M ETH O D 111
5.1 TEMPORAL DISCRETIZATION AND LUMPED MASS MATRIX
.....................................................112
5.2 SPECTRAL CELL METHOD AND MASS LUMPING IN CUT C E L L S
..................................................117
5.2.1 ROW-SUM TECHNIQUE FOR CUT C E L L S
.....................................................................117
5.2.2 MASS SCALING
TECHNIQUE....................................................................................
118
5.2.3 DIAGONAL SCALING
TECHNIQUE..............................................................................
118
5.3 NUMERICAL EXAMPLES
....................................................................................................
119
5.3.1 LAMB WAVES IN A 2D P L A T E
..............................................................................
119
5.3.2 LAMB WAVES IN A PERFORATED PLATE
...............................................................123
5.3.3 LAMB WAVES IN A 2D POROUS P L A T E
.................................................................125
5.3.4 WAVE PROPAGATION IN A SANDWICH P L A T E
...........................................................130
6 SUM M ARY AND O UTLOOK 133
A G AUSSIAN QUADRATURE RULES 136
A .L GAUSS-LEGENDRE
QUADRATURE..........................................................................................
136
A.2 GAUSS-LEGENDRE-LOBATTO Q U A D RA TU RE
..........................................................................
137
B P OLYN OM IAL INTEGRANDS 138
C C HEN-B ABUSKA P OIN TS 139
B IBLIOGRAPHY 140
|
any_adam_object | 1 |
author | Joulaian, Meysam |
author_GND | (DE-588)1133576958 |
author_facet | Joulaian, Meysam |
author_role | aut |
author_sort | Joulaian, Meysam |
author_variant | m j mj |
building | Verbundindex |
bvnumber | BV044350941 |
classification_rvk | UF 1800 |
classification_tum | BAU 154d |
ctrlnum | (OCoLC)992548700 (DE-599)BVBBV044350941 |
discipline | Physik Bauingenieurwesen |
edition | Als Manuskript gedruckt |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01872nam a2200433 cb4500</leader><controlfield tag="001">BV044350941</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181203 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170614s2017 a||| m||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783183348183</subfield><subfield code="9">978-3-18-334818-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992548700</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044350941</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-210</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1800</subfield><subfield code="0">(DE-625)145565:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 154d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Joulaian, Meysam</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1133576958</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The hierarchical finite cell method for problems in structural mechanics</subfield><subfield code="c">Meysam Joulaian, M. SC., Hamburg</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">The hierarchical finite cell method</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Als Manuskript gedruckt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Düsseldorf</subfield><subfield code="b">VDI Verlag</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 152 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fortschritt-Berichte VDI. Reihe 18, Mechanik, Bruchmechanik</subfield><subfield code="v">Nr. 348</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Hamburg-Harburg</subfield><subfield code="d">2016</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturmechanik</subfield><subfield code="0">(DE-588)4126904-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strukturmechanik</subfield><subfield code="0">(DE-588)4126904-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fortschritt-Berichte VDI. Reihe 18, Mechanik, Bruchmechanik</subfield><subfield code="v">Nr. 348</subfield><subfield code="w">(DE-604)BV001902156</subfield><subfield code="9">348</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029753735&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029753735</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV044350941 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:50:31Z |
institution | BVB |
isbn | 9783183348183 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029753735 |
oclc_num | 992548700 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-83 DE-210 |
owner_facet | DE-91G DE-BY-TUM DE-83 DE-210 |
physical | X, 152 Seiten Illustrationen |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | VDI Verlag |
record_format | marc |
series | Fortschritt-Berichte VDI. Reihe 18, Mechanik, Bruchmechanik |
series2 | Fortschritt-Berichte VDI. Reihe 18, Mechanik, Bruchmechanik |
spelling | Joulaian, Meysam Verfasser (DE-588)1133576958 aut The hierarchical finite cell method for problems in structural mechanics Meysam Joulaian, M. SC., Hamburg The hierarchical finite cell method Als Manuskript gedruckt Düsseldorf VDI Verlag [2017] © 2017 X, 152 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Fortschritt-Berichte VDI. Reihe 18, Mechanik, Bruchmechanik Nr. 348 Dissertation Technische Universität Hamburg-Harburg 2016 Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Strukturmechanik (DE-588)4126904-4 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Finite-Elemente-Methode (DE-588)4017233-8 s Strukturmechanik (DE-588)4126904-4 s DE-604 Fortschritt-Berichte VDI. Reihe 18, Mechanik, Bruchmechanik Nr. 348 (DE-604)BV001902156 348 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029753735&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Joulaian, Meysam The hierarchical finite cell method for problems in structural mechanics Fortschritt-Berichte VDI. Reihe 18, Mechanik, Bruchmechanik Finite-Elemente-Methode (DE-588)4017233-8 gnd Strukturmechanik (DE-588)4126904-4 gnd |
subject_GND | (DE-588)4017233-8 (DE-588)4126904-4 (DE-588)4113937-9 |
title | The hierarchical finite cell method for problems in structural mechanics |
title_alt | The hierarchical finite cell method |
title_auth | The hierarchical finite cell method for problems in structural mechanics |
title_exact_search | The hierarchical finite cell method for problems in structural mechanics |
title_full | The hierarchical finite cell method for problems in structural mechanics Meysam Joulaian, M. SC., Hamburg |
title_fullStr | The hierarchical finite cell method for problems in structural mechanics Meysam Joulaian, M. SC., Hamburg |
title_full_unstemmed | The hierarchical finite cell method for problems in structural mechanics Meysam Joulaian, M. SC., Hamburg |
title_short | The hierarchical finite cell method for problems in structural mechanics |
title_sort | the hierarchical finite cell method for problems in structural mechanics |
topic | Finite-Elemente-Methode (DE-588)4017233-8 gnd Strukturmechanik (DE-588)4126904-4 gnd |
topic_facet | Finite-Elemente-Methode Strukturmechanik Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029753735&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001902156 |
work_keys_str_mv | AT joulaianmeysam thehierarchicalfinitecellmethodforproblemsinstructuralmechanics AT joulaianmeysam thehierarchicalfinitecellmethod |