Feynman categories:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Paris
Société mathématique de France
2017
|
Schriftenreihe: | Astérisque
numéro 387 |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverzeichnis: Seite [155]-161. - Zusammenfassung in englischer und französischer Sprache |
Beschreibung: | vii, 161 Seiten Diagramme |
ISBN: | 9782856298527 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044350865 | ||
003 | DE-604 | ||
005 | 20210922 | ||
007 | t | ||
008 | 170614s2017 |||| |||| 00||| eng d | ||
020 | |a 9782856298527 |9 978-2-85629-852-7 | ||
035 | |a (OCoLC)990038122 | ||
035 | |a (DE-599)GBV890143269 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-384 |a DE-29T |a DE-188 | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a SI 832 |0 (DE-625)143196: |2 rvk | ||
100 | 1 | |a Kaufmann, Ralph M. |d 1969- |e Verfasser |0 (DE-588)115673946 |4 aut | |
245 | 1 | 0 | |a Feynman categories |c Ralph M. Kaufmann and Benjamin C. Ward |
264 | 1 | |a Paris |b Société mathématique de France |c 2017 | |
300 | |a vii, 161 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Astérisque |v numéro 387 | |
500 | |a Literaturverzeichnis: Seite [155]-161. - Zusammenfassung in englischer und französischer Sprache | ||
700 | 1 | |a Ward, Benjamin C. |e Verfasser |0 (DE-588)1236160193 |4 aut | |
830 | 0 | |a Astérisque |v numéro 387 |w (DE-604)BV002579439 |9 387 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029753659&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029753659 |
Datensatz im Suchindex
_version_ | 1804177591542743040 |
---|---|
adam_text | Titel: Feynman categories
Autor: Kaufmann, Ralph M
Jahr: 2017
FEYNMAN CATEGORIES Ralph M. KAUFMANN k Benjamin C. WARD
CONTENTS Introduction ................................................................ 1 0.1. General overview and background ................................... 1 0.2. Main definition ...................................................... 3 0.3. Examples ........................................................... 4 0.4. Discussion of the results ............................................ 7 0.5. Organization of the text ............................................ 16 Acknowledgments ........................................................ 19 Conventions and notations ............................................... 19 1. Feynman categories ...................................................... 21 1.1. Feynman categories—the definition ................................. 21 1.2. (Re)-Construction ................................................... 22 1.3. Surjections: A simple, but not too simple, example j? sur j ............ 23 1.4. Induced structures .................................................. 24 1.5. Functors as a generalization of operads and S-modules: Ops and G)v(mk 26 1.6. Morphisms of Feynman categories .................................. 29 1.7. Other relevant notions .............................................. 31 1.8. Weaker, alternative and Cartesian enriched notions of Feynman categories .......................................................... 32 1.9. Weak Feynman categories and indexed enriched Feynman categories 36 1.10. Connection to Feynman graphs and physics ........................ 38 1.11. Discussion and relation to other structures ......................... 38 2. Examples ................................................................ 41 2.1. The Feynman category 0 = () and categories indexed over it .................................................................. 42 2.2. Feynman categories indexed over 0 dlr ............................... 45 2.3. Feynman categories indexed over
0 ................................. 49 2.4. More functors ....................................................... 51 2.5. Colored versions .................................................... 51 2.6. Planar versions ...................................................... 51 2.7. Not so classical examples ........................................... 53 2.8. Ops with special elements: units and multiplication .................. 55 2.9. Truncation, stability, and the role of 0,1,2 flag corollas ............. 56 SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017
CONTENTS vi 2.10. Feynman categories with trivial ‘V ................................. 58 2.11. Remarks on relations to similar notions ............................ 59 3. General constructions .................................................... 61 3.1. Free monoidal construction ..................................... 61 3.2. NC-construction .................................................... 61 3.3. ¡¿fd ec o- Decorated Feynman categories ............................... 63 3.4. Iterating Feynman categories ....................................... 66 3.5. Arrow category ..................................................... 68 3.6. Feynman level category ......................................... 68 3.7. Feynman hyper category S^p ....................................... 70 4. Indexed Enriched Feynman categories, (odd) twists and Hopf algebras .... 73 4.1. Enrichment functors ................................................ 73 4.2. Indexed Feynman ¿^Categories: Orientations and Odd Qfvs ........ 77 4.3. Examples ........................................................... 78 4.4. A Connes-Kreimer style bi-algebra/Hopf algebra structure .......... 79 5. Feynman categories given by generators and relations .................... 83 5.1. Structure of © ...................................................... 83 5.2. Odd versions for Feynman categories with ordered presentations ---- 86 6. Universal Operations ..................................................... 91 6.1. Cocompletion and the universal Feynman category ................. 91 6.2. Enriched Versions ................................................... 93 6.3. Cocompletion for Qfus ................................................ 94 6.4. Generators and weak generators .................................... 94 6.5. Feynman categories indexed over 0 ................................. 94 6.6. Gerstenhaber’s construction and its generalizations in terms of Feynman
categories ................................................ 95 6.7. Collecting results .................................................... 97 6.8. Dual construction gf 0 .............................................. 97 6.9. Infinitesimal automorphism group, graph complex and grt .......... 98 6.10. Universal operations in iterated Feynman categories ............... 99 7. Feynman transform, the (co)bar construction and Master Equations ...... 101 7.1. Preliminaries ........................................................ 101 7.2. Graded Feynman categories ......................................... 102 7.3. The differential ..................................................... 104 7.4. The (Co)bar construction and the Feynman transform .............. 106 7.5. A general master equation .......................................... 109 8. Homotopy theory of ¿ 5 -0p-s c ............................................... 113 8.1. Preliminaries ........................................................ 113 8.2. The Model Structure ................................................ 121 ASTF.RISQUK 387
CONTENTS vii 8.3. Quillen adjunctions from morphisms of Feynman categories ......... 127 8.4. Cofibrant objects .................................................... 128 8.5. Homotopy classes of maps and master equations .................... 130 8.6. W Construction ..................................................... 133 A. Graph Glossary ......................................................... 139 A.l. The category of graphs ............................................. 139 A.2. Extra structures .................................................... 141 A.3. Flag killing and leaf operators; insertion operations ................ 145 B. Topological Model Structure ............................................. 147 Bibliography ................................................................ 155 SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017
|
any_adam_object | 1 |
author | Kaufmann, Ralph M. 1969- Ward, Benjamin C. |
author_GND | (DE-588)115673946 (DE-588)1236160193 |
author_facet | Kaufmann, Ralph M. 1969- Ward, Benjamin C. |
author_role | aut aut |
author_sort | Kaufmann, Ralph M. 1969- |
author_variant | r m k rm rmk b c w bc bcw |
building | Verbundindex |
bvnumber | BV044350865 |
classification_rvk | SK 320 SI 832 |
ctrlnum | (OCoLC)990038122 (DE-599)GBV890143269 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01412nam a2200337 cb4500</leader><controlfield tag="001">BV044350865</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210922 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170614s2017 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782856298527</subfield><subfield code="9">978-2-85629-852-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)990038122</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV890143269</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 832</subfield><subfield code="0">(DE-625)143196:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaufmann, Ralph M.</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115673946</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feynman categories</subfield><subfield code="c">Ralph M. Kaufmann and Benjamin C. Ward</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Société mathématique de France</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vii, 161 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Astérisque</subfield><subfield code="v">numéro 387</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis: Seite [155]-161. - Zusammenfassung in englischer und französischer Sprache</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ward, Benjamin C.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1236160193</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Astérisque</subfield><subfield code="v">numéro 387</subfield><subfield code="w">(DE-604)BV002579439</subfield><subfield code="9">387</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029753659&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029753659</subfield></datafield></record></collection> |
id | DE-604.BV044350865 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:50:31Z |
institution | BVB |
isbn | 9782856298527 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029753659 |
oclc_num | 990038122 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-384 DE-29T DE-188 |
owner_facet | DE-19 DE-BY-UBM DE-384 DE-29T DE-188 |
physical | vii, 161 Seiten Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Société mathématique de France |
record_format | marc |
series | Astérisque |
series2 | Astérisque |
spelling | Kaufmann, Ralph M. 1969- Verfasser (DE-588)115673946 aut Feynman categories Ralph M. Kaufmann and Benjamin C. Ward Paris Société mathématique de France 2017 vii, 161 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Astérisque numéro 387 Literaturverzeichnis: Seite [155]-161. - Zusammenfassung in englischer und französischer Sprache Ward, Benjamin C. Verfasser (DE-588)1236160193 aut Astérisque numéro 387 (DE-604)BV002579439 387 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029753659&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kaufmann, Ralph M. 1969- Ward, Benjamin C. Feynman categories Astérisque |
title | Feynman categories |
title_auth | Feynman categories |
title_exact_search | Feynman categories |
title_full | Feynman categories Ralph M. Kaufmann and Benjamin C. Ward |
title_fullStr | Feynman categories Ralph M. Kaufmann and Benjamin C. Ward |
title_full_unstemmed | Feynman categories Ralph M. Kaufmann and Benjamin C. Ward |
title_short | Feynman categories |
title_sort | feynman categories |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029753659&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002579439 |
work_keys_str_mv | AT kaufmannralphm feynmancategories AT wardbenjaminc feynmancategories |