The handbook of microbial metabolism of amino acids:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxfordshire, UK
CAB International
[2017]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xli, 497 Seiten Diagramme |
ISBN: | 9781780647234 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044348757 | ||
003 | DE-604 | ||
005 | 20170828 | ||
007 | t | ||
008 | 170613s2017 xxk|||| |||| 00||| eng d | ||
010 | |a 016028986 | ||
020 | |a 9781780647234 |9 978-1-78064-723-4 | ||
035 | |a (OCoLC)1002275227 | ||
035 | |a (DE-599)BVBBV044348757 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-29T |a DE-11 | ||
050 | 0 | |a QP562.B73 | |
082 | 0 | |a 572/.6519 |2 23 | |
084 | |a WD 5200 |0 (DE-625)148195: |2 rvk | ||
084 | |a WF 1350 |0 (DE-625)148326: |2 rvk | ||
245 | 1 | 0 | |a The handbook of microbial metabolism of amino acids |c edited by J.P.F. D'Mello |
246 | 1 | 3 | |a Microbial metabolism of amino acids |
264 | 1 | |a Oxfordshire, UK |b CAB International |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xli, 497 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Amino Acids | |
650 | 4 | |a Microbiological Phenomena | |
650 | 4 | |a Amino Acids | |
650 | 4 | |a Biosynthetic Pathways | |
700 | 1 | |a D'Mello, J. P. Felix |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, pdf |z 9781780647241 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029751605&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029751605 |
Datensatz im Suchindex
_version_ | 1804177587882164224 |
---|---|
adam_text | Titel: The handbook of microbial metabolism of amino acids
Autor: D Mello, J.P. Felix
Jahr: 2017
Contents
Contributors xix
Preface: Concluding the Series xxiii
Glossary xxix
PART I GLUTAMATE
1 Structural and Functional Properties of Glutamate Dehydrogenases 1
S. Brown and D.C. Simcock
1.1 Abstract 1
1.2 Introduction 1
1.3 Enzyme Structure 2
1.3.1 Substrate and cofactor binding 2
1.3.2 Tertiary and quaternary structure 3
1.4 Enzyme Mechanism and Kinetics 4
1.5 Genomics 7
1.6 Metabolic Context 8
1.7 Conclusions 10
References 11
2 Glutamate Decarboxylase in Bacteria 15
E Giovannercole, E. Pennacchietti and D. De Biase
2.1 Abstract 15
2.2 Introduction 15
2.2.1 Centrality of L-glutamate in bacterial metabolism 15
2.2.2 Importance of L-glutamate in the acid stress response:
the GDAR system 17
2.3 Glutamate Decarboxylase (Gad) in Bacteria 19
2.3.1 Escherichia coli Gad 19
2.3.1.1 Structural studies 19
2.3.1.2 Spectroscopic properties 21
2.3.1.3 Gad signature 21
v
vi
Contents
2.3.2 Other bacterial Gads 22
2.3.2.1 GadB from Clostridium perfringens 2 2
2.3.2.2 GadB from Brucella microti 22
2.3.2.3 GadB from lactic acid bacteria 22
2.4 Use of Gad for y-Aminobutyrate (GABA) Production:
a Beneficial Molecule for our Society 2 3
2.4.1 GABA in health and disease 2 3
2.4.2 GABA as an alternative promising molecule for
sustainable resources 24
2.5 Conclusions 24
References 25
3 The Yeast y-Aminobutyrate (GABA) Shunt 29
R.D. Locy
3.1 Abstract 29
3.2 Introduction 29
3.3 Metabolism of GABA - the GABA Shunt 31
3.3.1 Glutamate decarboxylase 31
3.3.2 GABA aminotransferase 32
3.3.3 Succinate semialdehyde dehydrogenase 3 3
3.4 Regulation of the Yeast GABA Shunt 34
3.5 The Role of the Yeast GABA Shunt in Environmental Stress Responses 3 9
3.6 Conclusions 41
Acknowledgements 42
References 42
PART II LYSINE, ARGININE AND HYDROXYPROLINE
4 Lysine Biosynthesis in Microorganisms 49
A.O. Hudson, M.A. Savka, EG. Pearce and R.C.J. Dobson
4.1 Abstract 49
4.2 Introduction 49
4.2.1 The amino acid lysine 49
4.2.2 The aspartate-derived amino acids 50
4.3 Lysine Biosynthesis in Microorganisms 50
4.3.1 The a-aminoadipate (AAA) pathway 51
4.4 Lysine Biosynthesis in Bacteria: the Diaminopimelate (DAP) Pathways 51
4.4.1 The DAP acyl pathways 52
4.4.2 The meso-diaminopimelate (meso-DAP) dehydrogenase
(Ddh) pathway 58
4.4.3 l,l-Diaminopimelate aminotransferase (DapL) pathway:
a novel variant of the DAP pathways 5 8
4.5 Insights on Bridging the Metabolic Gap Between Tetrahydrodipicolinate
(THDP) and l,l-DAP in Plants and Bacteria That Do Not Contain
Orthologues of the DAP Pathway Enzymes DapD, DapC and DapE 60
4.6 The Discovery of the l,l-Diaminopimelate Aminotransferase
(DapL) Variant Pathway 60
4.7 The Link Between Lysine and Bacterial Peptidoglycan (PG) Biosynthesis 62
4.8 Conclusions 63
Acknowledgements 64
References 64
Contents
vii
5 Arginine Deiminase in Microorganisms 70
F. Leroy and D. Charlier
5.1 Abstract 70
5.2 Introduction 70
5.3 General Mechanisms 71
5.3.1 Overview of the pathway and its enzymes 71
5.3.2 Genetic make-up 71
5.3.3 Regulation of the pathway 73
5.4 Ecological Situation and Examples 75
5.4.1 Role in ecological adaptation 7 5
5.4.2 Examples from (clinical) non-food ecosystems 75
5.4.3 Examples from food ecosystems 76
5.5 Conclusions 77
Acknowledgements 77
References 77
6 Arginase and Microbial Pathogenesis in the Lungs 81
M.J. Romero Lucas, R. W. Caldwell, D. Fulton, T. Chakraborty and R. Lucas
6.1 Abstract 81
6.2 Introduction 81
6.3 Importance of Exotoxins From G+ Bacteria in Permeability Oedema 8 2
6.4 Importance of l-Arginine in Pneumococcal Physiological Fitness 8 3
6.5 Role of l-Arginine in Alveolar Macrophage Polarization
During Pneumococcal Pneumonia 83
6.6 Opposing Actions of Arginase and Endothelial Nitric Oxide
Synthase (eNOS) in Capillary Barrier Regulation 8 5
6.7 Conclusions 87
Acknowledgement 8 7
References 8 7
7 Arginine and Methionine as Precursors of Polyamines in Trypanosomatids 91
Y. Perez-Pertejo, J.M. Moran and R. Balana Fouce
7.1 Abstract 91
7.2 Trypanosomatid-borne Diseases 91
7.3 l-Methionine Metabolism 93
7.3.1 l-Methionine and S-adenosyl-l-methionine (AdoMet) uptake 9 3
7.3.2 AdoMet synthesis 9 5
7.3.3 The transsulfuration pathway 9 5
7.3.4 l-Methionine regeneration: the folate cycle 96
7.3.5 The 5 -methylthioadenosine salvage pathway 9 6
7.4 l-Arginine Metabolism 97
7.4.1 l-Arginine uptake 97
7.4.2 Arginase 99
7.4.3 Phosphagen production 100
7.5 Polyamine Metabolism 100
7.5.1 Polyamine biosynthesis in mammals: the canonical pathway 100
7.5.2 Polyamine metabolism in trypanosomatids 101
7.6 Role of l-Arginine in Host-Parasite Interactions 104
7.7 Polyamines as Potential Targets for Drug Development 106
7.8 Conclusions 108
Acknowledgements 109
References 109
viii
Contents
8 Ornithine and Lysine Decarboxylation in Bacteria 116
P.M. Lucas
8.1 Abstract 116
8.2 Introduction 116
8.3 Definitions 117
8.3.1 L-Ornithine 117
8.3.2 L-Lysine 117
8.3.3Putrescine 117
8.3.4 Cadaverine 117
8.4 The Ornithine Decarboxylase (ODC) and Lysine Decarboxylase (LDC) Systems 118
8.4.1 Putrescine and cadaverine production systems 118
8.4.2 The ODC system 118
8.4.2.1 Genetic organization of the ode operon 118
8.4.2.2 L-Ornithine decarboxylase 119
8.4.2.3 The ornithine/putrescine exchanger 119
8.4.3 The LDC system 119
8.4.3.1 The cad operon of enterobacteria 119
8.4.3.2 The LDC locus of the LAB strain
Lactobacillus saerimneri 30a 119
8.4.3.3 L-Lysine decarboxylase 120
8.4.3.4 The lysine/cadaverine exchanger 120
8.5 ODC- and LDC-Positive Bacteria 120
8.5.1 Origin and diversity of bacteria 120
8.5.2 Detection methods 121
8.5.3 Lactic acid bacteria 121
8.5.4 Enterobacteria 121
8.5.5 Other bacteria 122
8.6 Physiological Role of ODC and LDC 122
8.6.1 Acid resistance and energy production 122
8.6.2 cad Genes and the virulence of pathogenic strains of Escherichia coli 122
8.7 Food Safety Implications 123
8.7.1 Origin of biogenic amines in food 123
8.7.2 Toxicological effects of food-borne biogenic amines 123
8.7.3 Control of biogenic amine formation in food 124
8.8 Conclusions 124
References 124
9 The Role of Nitric Oxide Signalling in Yeast Stress Response and Cell Death 128
P. Ludovico, B. Sampaio-Marques, N.S. Osdrio and E Rodrigues
9.1 Abstract 128
9.2 Introduction 128
9.3 Nitric Oxide Biosynthesis in Yeast 129
9.4 Nitric Oxide Signalling 131
9.4.1 The nitrosative stress response in yeast 132
9.4.2 Nitric oxide signalling in the yeast stress response 134
9.5 Nitric Oxide Signalling in Yeast Cell Death and Ageing 136
9.6 Conclusions 138
References 138
10 Hydroxyproline Metabolism in Microorganisms 142
S. Watanabe
10.1 Abstract 142
10.2 Introduction 143
Contents
ix
10.3 Metabolic Pathway of tra/is-4-Hydroxy-L-Proline (T4LHyp) in Mammals 143
10.4 Metabolic Pathway of T4LHyp in Bacteria 143
10.4.1 Hydroxy proline 2 -epimerase 144
10.4.2 D-Hydroxyproline dehydrogenase 144
10.4.3 zll-Pyrroline-4-hydroxy-2-carboxylate (Pyr4H2C) deaminase 145
10.4.4 a-Ketoglutaric semialdehyde dehydrogenase 147
10.5 Metabolic Pathway of £rans-3-Hydroxy-L-Proline (T3LHyp) 147
10.5.1 T3LHyp dehydratase 147
10.5.2 /ll-Pyrroline-2-carboxylate (Pyr2C) reductase 147
10.6 Metabolic Pathway of cis-3-Hydroxy-L-Proline (C3LHyp) 149
10.6.1 C 3 LHyp dehydratase 149
10.6.2 Pyr2C reductase 149
10.7 T4LHyp Betaine Metabolism 149
10.8 Hydroxyproline Metabolism in Archaea 150
10.9 Hydroxyproline Metabolism in Fungi 150
10.10 Enzymatic Detection of Hydroxyproline 150
10.11 Conclusions 151
References 151
PART III SERINE AND THREONINE
11 Cellular Responses to Serine in Yeast 153
I.W. Dawes and G.D. Kornfeld
II.1 Abstract 153
11.2 Introduction 153
11.2.1 Metabolic roles of L-serine 153
11.2.2 Role of L-serine in the cell walls of yeast and other fungi 155
11.2.3 Role of L-serine in the heat-shock response 155
11.3 Uptake and Synthesis of L-Serine and Glycine and the Central
Role of One-Carbon Metabolism 156
11.3.1 Uptake of L-serine and glycine 156
11.3.2 Synthesis of L-serine and glycine 156
11.3.3 Central role of one-carbon metabolism in synthesis
and interconversion of glycine and L-serine 157
11.4 Cellular Responses to Excess L-Serine and Glycine 159
11.5 Regulation of L-Serine and Glycine Metabolism 162
11.5.1 Control of L-serine and glycine uptake 162
11.5.2 Regulation of L-serine and glycine metabolism 163
11.5.3 Differences in L-serine metabolic networks and
regulation between aerobic and anaerobic growth 164
11.6 Conclusions 165
Acknowledgements 165
References 165
12 Threonine Degradation in Hyperthermophilic Organisms 170
Q. Bashir, N. Rashid and M. Akhtar
12.1 Abstract 170
12.2 Introduction 170
12.3 Threonine Degradation Pathways 171
12.4 Threonine Degradation in Hyperthermophiles 173
12.5 Conclusions 176
References 176
X
Contents
PART IV SULFUR AMINO ACIDS
13 Methionine Synthesis in Microbes 179
F. Wencker andW. Ziebuhr
13.1 Abstract 179
13.2 Introduction 179
13.3 Bacterial Methionine Biosynthesis 181
13.3.1 Acylation: activation of homoserine 181
13.3.2 Sulfuration: from homoserine to homocysteine 181
13.3.2.1 Direct sulfuration 182
13.3.2.2 One-step synthesis 182
13.3.2.3 Transsulfuration 182
13.3.3 Methylation: from homocysteine to methionine 183
13.4 Regulation of Methionine Biosynthesis 183
13.4.1 Mechanisms of control of methionine biosynthesis 183
13.4.1.1 Protein-mediated transcription control
(transcription factors) 183
13.4.1.2 RNA-mediated transcription control (riboswitches) 185
13.4.2 Methionine metabolism and its control in selected bacterial species 189
13.4.2.1 Escherichia coli 189
13.4.2.2 Corynebacterium ghitamicum 190
13.4.2.3 Bacillus subtilis 190
13.4.2.4 Staphylococcus aureus 192
13.5 Methionine Biosynthesis as a Target for Novel Antibacterial Strategies 193
13.5.1 Methionine biosynthesis enzyme and regulator protein inhibition 193
13.5.2 Riboswitches as drug targets 193
13.6 Conclusions 194
References 194
14 Regulation of Sulfur Amino Acid Metabolism in Fungi 198
J. V. Paietta
14.1 Abstract 198
14.2 Introduction 198
14.3 Useful Sources of Sulfur 199
14.4 Response to Sulfur Limitation Related to Acquisition 200
14.4.1 Direct acquisition of cysteine and methionine 201
14.5 Adjustments to Cellular Protein Sulfur Composition 202
14.6 Sulfur Assimilation and the Synthesis of Cysteine and Methionine 202
14.7 Components of the Sulfur Regulatory System 203
14.7.1 The CYS3 regulator 203
14.7.2 Sulfur controller regulators 204
14.7.3 The sulfur signal and sensor 205
14.8 Operation of the Sulfur Regulatory System 206
14.9 Regulatory Comparison with Other Fungi 206
14.10 Conclusions 207
References 208
15 Insights on O-Acetylserine Sulfhydrylase Structure,
Function and Biopharmaceutical Applications 211
B. Campanini and A. Mozzarelli
15.1 Abstract 211
15.2 Introduction 211
15.3 Structure 213
Contents
xi
15.4 Function and Regulation 214
15.5 Moonlighting Activities 216
15.6 Biopharmaceutical Applications 217
15.7 Conclusions 218
References 218
PART V BRANCHED-CHAIN AMINO ACIDS
16 Metabolic Engineering of Corynebacterium glutamicum
for l-Valine Production 223
X. Wang and P.}. Quinn
16.1 Abstract 223
16.2 Introduction 223
16.3 Biosynthetic Pathway of l-Valine in C. glutamicum 224
16.4 Regulation of l-Valine Biosynthesis in C. glutamicum 225
16.4.1 Transcriptional repression 226
16.4.2 Feedback inhibition 226
16.4.3 Regulation of transport 226
16.5 Metabolic Engineering of l-Valine Production in C. glutamicum 226
16.5.1 Accumulating the key precursors in the biosynthetic
pathway of l-valine 227
16.5.2 Strengthening the biosynthetic pathway of l-valine by
overexpressingthe key genes 227
16.5.3 Optimizing l-valine accumulation by chromosomal mutagenesis 229
16.5.4 Balancing the cofactors to improve l-valine production 229
16.6 Outlook 230
Acknowledgements 230
References 231
17 Flavour Formation From Leucine by Lactic Acid Bacteria (LAB) 234
M.I. Afzal, S. Delaunay and C. Cailliez-Grimal
17.1 Abstract 234
17.2 Introduction 234
17.3 Leucine Catabolic Pathways Among LAB 236
17.4 Leucine Catabolic Activities and Their Effects on
the Sensory Characteristics of Foods 237
17.5 Conclusions 241
References 241
PART VI AROMATIC AMINO ACIDS AND HISTIDINE
18 Microbial Degradation of Phenolic Amino Acids 244
D.E. Holmes and ].A. Smith
18.1 Abstract 244
18.2 Introduction 244
18.3 Phenylalanine Metabolism 245
18.4 Tyrosine Metabolism 245
18.5 Benzoyl-CoA Reduction Pathway 246
18.6 Glutaryl-CoA Pathway 249
18.7 Homology with Mesophilic Bacterial Proteins 249
18.8 Industrial Applications 251
18.9 Conclusions 251
References 252
256
256
256
256
257
260
260
261
262
264
264
267
267
267
267
268
269
270
270
271
271
273
273
277
277
277
279
280
280
281
281
283
284
284
284
286
288
288
291
291
291
291
293
293
Contents
The Biosynthesis of Tryptophan
E.J. Parker
19.1 Abstract
19.2 Introduction
19.3 Overviewof Tryptophan Biosynthesis
19.4 Anthranilate Synthase
19.5 Anthranilate Phosphoribosyltransferase
19.6 Phosphoribosyl Anthranilate Isomerase
19.7 Indole Glycerol Phosphate Synthase
19.8 Tryptophan Synthase
19.9 Conclusions
References
Tryptophan Biosynthesis in Bacteria: Drug Targets and Immunology
].S. Lott
20.1 Abstract
20.2 Introduction
20.3 The Tryptophan Biosynthetic Pathway
20.4 Tryptophan Depletion is a Response of the Innate Immune System
20.5 Mycobacterium tuberculosis is a Globally Significant Human Pathogen
20.6 The Tryptophan Biosynthetic Pathway in Mycobacterium tuberculosis
20.7 Tryptophan Biosynthesis is Essential for Host Colonization by M. tuberculosis
20.8 The Role of Indoleamine 2,3-Dioxygenase 1 (IDO-1) in
M. tuberculosis Infection
20.9 Inhibitors of Tryptophan Biosynthesis in M. tuberculosis
20.10 Conclusions and Future Prospects
References
The Kynurenine Pathway of Tryptophan Metabolism in Microorganisms
R.S. Phillips
21.1 Abstract
21.2 Introduction
21.3 Distribution of the Kynurenine Pathway in Microorganisms
21.4 Regulation of the Kynurenine Pathway in Microorganisms
21.5 Tryptophan/Indoleamine Dioxygenase
21.6 Kynurenine Formamidase
21.7 Kynurenine Monooxygenase
21.8 Kynureninase
21.9 3-Hydroxyanthranilate 3,4-Dioxygenase
21.10 2-Amino-3-carboxymuconate Semialdehyde Decarboxylase
21.11 2-Aminomuconate Semialdehyde Dehydrogenase and
2-Aminomuconate Deaminase
21.12 Roles of the Kynurenine Pathway in Microorganisms
21.13 Conclusions
References
Histidine Degradation in Bacteria
A.J. Nieuwkoop and R.A. Bender
22.1 Abstract
22.2 The Histidine Utilization (Hut) Pathway
22.2.1 Histidase
22.2.2 Urocanase
22.2.3 Imidazolone propionate hydrolase (IPase)
Contents
xiii
22.2.4 Formiminoglutamate hydrolase (FIGase) 293
22.2.5 Formiminoglutamate (FIG) deiminase 294
22.2.6 Formylglutamate hydrolase (FGase) 294
22.2.7 Histidineand urocanate permeases 294
22.2.7.1 Urocanate permease in enteric bacteria 2 94
22.2.7.2 Histidine and urocanate permeases in pseudomonads 294
22.2.7.3 The Hut-specific permease of Bacillus subtilis 296
22.3 Hut Operon Structure and Conservation 296
22.3.1 The hut operons of enteric bacteria 296
22.3.2 The hut operons of pseudomonads 296
22.3.2.1 The hut operons of Pseudomonasputida 297
22.3.2.2 The hut operons of P. fluorescens 297
22.3.2.3 The hut operons of P. aeruginosa 297
22.3.3 The hut operon of Bacillus subtilis 297
22.4 Regulation of Hut Expression 298
22.5 Theme and Variation Within the Hut Paradigm 298
22.5.1 The hut system of Streptomyces spp. 298
22.5.2 The hut system of Ralstonia eutropha 299
22.5.3 The hut system of Caulobacter crescentus 299
22.6 Unanswered Questions 300
References 300
23 The Histidine Phosphatase Superfamily in Pathogenic Bacteria 304
O.O. CokerandP. Palittapongampim
23.1 Abstract 304
23.2 Introduction 304
23.3 The Histidine Phosphatase Superfamily 305
23.3.1 Definition and general properties 305
23.3.2 Subgrouping 305
23.3.3 Structure and mechanism 307
23.4 Functions of the Histidine Phosphatase Superfamily in Bacteria 309
23.4.1 Biosynthetic pathways 309
23.4.2 Scavenging functions 310
23.4.3 Signalling 310
23.4.4 Pathogenesis 310
23.5 Role of Histidine Acid Phosphatase Superfamily Proteins in
the Pathogenicity of Mycobacterium tuberculosis 311
23.6 Conclusions 312
References 312
PART vn d-AMINO acids
24 Functions and Metabolism of n-Aminn Acids in Microorganisms 315
S. Takahashi, K. Abe, K. Shibata and Y. Kera
24.1 Abstract 315
24.2 Introduction 315
24.3 Functions of d-Amino Acids 316
24.3.1 Functions of d-amino acids in prokaryotic microorganisms 316
24.3.2 Functions of d-amino acids in eukaryotic microorganisms 318
24.4 d-Amino Acid Synthesis 319
24.4.1 PLP-dependent amino acid racemase 319
24.4.1.1 Alanine racemase 319
xiv
Contents
24.4.1.2 Serine racemase 319
24.4.1.3 Arginine/lysine racemase 320
24.4.1.4 Broad substrate specificity amino acid racemase 320
24.4.2 PLP-independent amino acid racemase 321
24.4.2.1 Aspartate racemase 321
24.4.2.2 Glutamate racemase 321
24.4.2.3 Proline racemase 322
24.4.2.4 Phenylalanine racemase (gramicidin S synthetase A) 322
24.4.3 D-Amino acid aminotransferase 322
24.4.4 Enzyme side reactions 323
24.5 D-Amino Acid Degradation 323
24.5.1 D-Amino acid oxidase 323
24.5.2 D-Aspartate oxidase 324
24.5.3 D-Amino acid dehydrogenase 324
24.5.4 D-Serine/threonine dehydratase 325
24.5.5 D-Proline reductase 326
24.5.6 D-Threonine aldolase 326
24.6 Conclusions 326
References 326
2 5 Pathways of Utilization of D-Amino Acids in Higher Organisms 332
J.P.F. D Mello
25.1 Abstract 332
25.2Introduction 333
25.3 Occurrenceof D-Amino Acids in Higher Organisms 334
25.3.1 Functions 334
25.4 Endogenous Synthesis and Degradation of D-Amino Acids in
Higher Organisms 334
25.4.1 Amino acid racemases 336
25.4.2 D-Amino acid oxidases 337
25.4.3 Homeostasis 337
25.5 Food Composition and Safety 338
25.6 Feeding and Nutrition 340
25.6.1 Case study: D-amino acid kinetics in the ruminant animal 342
25.7 Toxicology 344
25.8 Clinical Applications: Emerging Potential 345
25.9 Conclusions 345
References 346
PART Vni ECOLOGY
26 Rhizobial Amino Acid Metabolism: Polyamine Biosynthesis and Functions 352
M.F. Dunn
26.1 Abstract 352
26.2 Introduction and Scope 352
26.3 Polyamine Chemistry, Detection and Analysis 353
26.4 Physiological Functions of Polyamines in Non-rhizobia 353
26.5 Synthesis and Degradation of Polyamine Precursors in Rhizobia 354
26.5.1 Lysine 355
26.5.2 Ornithineand arginine 355
26.6 Synthesis and Transport of Polyamines in Rhizobia 357
26.6.1 Polyamines produced by rhizobia under free-living
and symbiotic conditions 357
Contents
xv
26.6.2 Polyamlne biosynthesis in rhizobia 358
26.6.3 Poly amine transport in rhizobia 359
26.6.4 Polyamine degradation in rhizobia 359
26.7 Functions of Polyamines in Free-Living Rhizobia 361
26.7.1 Requirement of polyamines for growth 361
26.7.2 Polyamines andmotility 361
26.7.3 Polyamines and biofilm formation 361
26.7.4 Polyamines in abiotic stress resistance 363
26.8 Functions of Polyamines in Symbiotically-Associated Rhizobia 365
26.8.1 Influence of polyamines on nodulation and nitrogen fixation 365
26.8.2 Influence of polyamines on symbiosis under stress conditions 365
26.9 Concluding Remarks 365
Acknowledgements 366
References 366
27 Working Together: Amino Acid Biosynthesis in Endosymbiont-harbouring
Trypanosomatidae 371
J.M.P. Alves
27.1 Abstract 371
27.2 Background 371
27.3 In sllico Metabolic Reconstruction 372
2 7.4 Essential Amino Acid Biosynthesis 373
27.4.1 Arginine and ornithine 373
27.4.2 Cysteine and methionine 375
27.4.3 Histidine 376
27.4.4 Isoleucine, leucine and valine 376
27.4.5 Lysine 377
2 7.4.6 Phenylalanine, tyrosine and tryptophan 377
27.4.7 Threonine 377
27.5 Non-essential Amino Acid Biosynthesis 378
27.5.1 Glycine and serine 378
27.5.2 Alanine, aspartate and asparagine 378
27.5.3 Proline 379
27.5.4 Glutamine and glutamate 3 79
27.6 Conclusions 380
References 381
28 Amino Acid Metabolism in Helminths 384
H. V. Simpson and S. Umair
28.1 Abstract 384
28.2 Introduction 384
28.3 Overview 384
28.4 Glutamate 385
28.4.1 Glutamate dehydrogenase 386
28.4.2 Glutamine synthetase (GS)-glutamate synthase (GOGAT) 386
28.4.3 Glutaminase 386
28.4.4 G ABA (y-aminobutyrate) shunt 386
28.5 Proline 386
28.6 Arginine 387
28.6.1 Arginase 387
28.6.2 Ornithine urea cycle 387
28.6.3 Nitric oxide synthase (NOS) 387
xvi
Contents
28.6.4 Agmatine 387
28.6.5 Poly amines 387
28.6.6 Arginine kinase 388
28.7 Glycine, Sarcosine, Serine and Threonine 388
28.7.1 Glycine 388
28.7.2 Sarcosine 388
28.7.3 Serine 388
28.7.4 Threonine 389
28.8 Methionine and Cysteine 389
28.8.1 Glutathione 389
28.9 Leucine, Isoleucine and Valine 389
28.10 Tyrosine, Phenylalanine and Tryptophan 389
28.10.1 Tyrosinase 390
28.10.2 Chorismate mutase (CM) 390
28.11 Alanine 390
28.12 Aspartate and Asparagine 390
28.13 Lysine 391
28.14 Conclusions 391
References 391
29 Microbial Degradation of Amino Acids in Anoxic Environments 398
A. Parthasarathy andN.P. Chowdhury
29.1 Abstract 398
29.2 Introduction 398
29.3 Unusual Reactions in Amino Acid Fermentation 400
29.4 The 2-Hydroxyacid Pathway 400
29.4.1 Pathway and mechanism of dehydration 400
29.4.2 Activation of 2-hydroxyacyl-CoA dehydratase (2-HADH) 401
29.4.3 Bioenergetics of the 2-hydroxyacid pathways 403
29.4.4 Reaction constants of 2-HADH and physiological implications 403
29.5 The 4-Hydroxybutyrate and 5-Hydroxyvalerate Pathways:
Flavin-mediated Elimination of the Terminal Hydroxy Groups 403
29.5.1 The 4-hydroxybutyrate pathway 403
29.5.2 The 5-hydroxyvalerate pathway 404
29.6 Pathways via Carbon Skeleton Rearrangements 404
29.6.1 Lysine fermentation via 3,5-diaminohexanoate 404
29.6.2 The 3-methylaspartate (mesaconate) pathway 406
29.6.2.1 Glutamate mutase 407
29.7 Energy Conservation in Anaerobes and Electron Bifurcation 407
29.7.1 Anaerobic energy metabolism 407
29.7.2 Ferredoxins and anaerobic metabolism 408
29.7.3 Flavin-based electron bifurcation (FBEB) 408
29.7.4 A membrane-associated Rhodobacter nitrogen fixation protein
(Rnf)-complex for ferredoxin reoxidation and energy conservation 409
29.8 Biotechnological Applications of Amino Acid Fermentation 410
29.9 Medical and Environmental Aspects of Amino Acid Fermentation 411
29.9.1 Medical aspects 411
29.9.2 Environmental aspects 411
29.10 Conclusions 412
Acknowledgements 412
References 412
Contents
xvii
30 Utilization of N-Methylated Amino Acids by Bacteria 418
M.J. Wargo
30.1 Abstract 418
30.2 Introduction 418
30.3 Glycine Betaine and Its Metabolites 419
30.3.1 Sources 419
30.3.2 Roles in pathogenesis, symbiosis and osmoprotection 420
30.3.3 Biosynthesis 421
30.3.4 Metabolism 421
30.4 N-Methylated Prolines 422
30.4.1 Sources 422
30.4.2 Roles in symbiosis and osmoprotection 42 3
30.4.3 Biosynthesis 423
30.4.4 Catabolism 423
30.5 Histidine Betaine and Its Metabolites 424
30.5.1 Sources 424
30.5.2 Role in bacterial biology 425
30.5.3 Biosynthesis 425
30.5.4 Catabolism 425
30.6 N-Methylated Tryptophan 425
30.7 N-Methylated Tyrosine 426
30.8 Conclusions 426
References 426
31 Biofilm Formation: Amino Acid Biomarkers in Candida Albicans 433
Y. Cao and Z. Liao
31.1 Abstract 433
31.2 Introduction 433
31.3 The Adherence Phase 435
31.4 The Initiation Phase 437
31.5 The Maturation and Dispersal Phase 438
31.6 Amino Acids and the Tricarboxylic Acid (TCA) Cycle 440
31.7 Drug Therapies and C. albicans Biofilms 440
31.8 Conclusions 441
References 442
PART IX CONCLUSIONS
32 Recent Advances Underpinning Innovative Strategies for the Future 444
J.P.F. D Mello
32.1 Abstract 444
32.2 Overview 446
32.3 Unlocking Practical Value 448
32.4 Glutamate 450
32.5 Arginine 450
32.6 Serine 450
32.7 Methionine 451
32.8 Branched-chain Amino Acids 451
32.9 Aromatic Amino Acids 454
32.9.1 Phenylalanine and tyrosine 454
32.9.2 Tryptophan 455
32.10 Secondary Metabolism 455
xviii
Contents
32.11 Osmoprotection 456
32.12 Host-microbe Interactions 457
32.12.1 Symbiosis 457
32.12.1.1 Microbial metabolism of non-protein amino
acids: contrasting observations 457
32.12.1.2 The host-pathogen axis 458
32.13 Antimicrobial Chemotherapy: Potential Targets in Pathways of Amino
Acid Metabolism 460
32.13.1 Drug/fungicide resistance 463
32.14 Summary of Outcomes 463
32.14.1 Food quality 464
32.14.2 Food safety 464
32.14.3 Enzyme and biochemical characterization of microorganisms 464
32.14.4 Metabolic pathways 465
32.14.5 Antagonisms and synergism 465
32.14.6 Amino acid metabolism and disease 466
32.14.7 Pathogenicity and virulence 466
32.14.8 Drug targets 467
32.15 Outlook 467
32.15.1 Constraints 467
32.15.2 Opportunities 468
References 468
Index 479
|
any_adam_object | 1 |
author2 | D'Mello, J. P. Felix |
author2_role | edt |
author2_variant | j p f d jpf jpfd |
author_facet | D'Mello, J. P. Felix |
building | Verbundindex |
bvnumber | BV044348757 |
callnumber-first | Q - Science |
callnumber-label | QP562 |
callnumber-raw | QP562.B73 |
callnumber-search | QP562.B73 |
callnumber-sort | QP 3562 B73 |
callnumber-subject | QP - Physiology |
classification_rvk | WD 5200 WF 1350 |
ctrlnum | (OCoLC)1002275227 (DE-599)BVBBV044348757 |
dewey-full | 572/.6519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572/.6519 |
dewey-search | 572/.6519 |
dewey-sort | 3572 46519 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01544nam a2200433 c 4500</leader><controlfield tag="001">BV044348757</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170828 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170613s2017 xxk|||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016028986</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781780647234</subfield><subfield code="9">978-1-78064-723-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1002275227</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044348757</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP562.B73</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572/.6519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 5200</subfield><subfield code="0">(DE-625)148195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WF 1350</subfield><subfield code="0">(DE-625)148326:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The handbook of microbial metabolism of amino acids</subfield><subfield code="c">edited by J.P.F. D'Mello</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Microbial metabolism of amino acids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxfordshire, UK</subfield><subfield code="b">CAB International</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xli, 497 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amino Acids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbiological Phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amino Acids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosynthetic Pathways</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">D'Mello, J. P. Felix</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, pdf</subfield><subfield code="z">9781780647241</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029751605&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029751605</subfield></datafield></record></collection> |
id | DE-604.BV044348757 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:50:27Z |
institution | BVB |
isbn | 9781780647234 |
language | English |
lccn | 016028986 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029751605 |
oclc_num | 1002275227 |
open_access_boolean | |
owner | DE-29T DE-11 |
owner_facet | DE-29T DE-11 |
physical | xli, 497 Seiten Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | CAB International |
record_format | marc |
spelling | The handbook of microbial metabolism of amino acids edited by J.P.F. D'Mello Microbial metabolism of amino acids Oxfordshire, UK CAB International [2017] © 2017 xli, 497 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Amino Acids Microbiological Phenomena Biosynthetic Pathways D'Mello, J. P. Felix edt Erscheint auch als Online-Ausgabe, pdf 9781780647241 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029751605&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | The handbook of microbial metabolism of amino acids Amino Acids Microbiological Phenomena Biosynthetic Pathways |
title | The handbook of microbial metabolism of amino acids |
title_alt | Microbial metabolism of amino acids |
title_auth | The handbook of microbial metabolism of amino acids |
title_exact_search | The handbook of microbial metabolism of amino acids |
title_full | The handbook of microbial metabolism of amino acids edited by J.P.F. D'Mello |
title_fullStr | The handbook of microbial metabolism of amino acids edited by J.P.F. D'Mello |
title_full_unstemmed | The handbook of microbial metabolism of amino acids edited by J.P.F. D'Mello |
title_short | The handbook of microbial metabolism of amino acids |
title_sort | the handbook of microbial metabolism of amino acids |
topic | Amino Acids Microbiological Phenomena Biosynthetic Pathways |
topic_facet | Amino Acids Microbiological Phenomena Biosynthetic Pathways |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029751605&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dmellojpfelix thehandbookofmicrobialmetabolismofaminoacids AT dmellojpfelix microbialmetabolismofaminoacids |