Classifying the absolute toral rank two case:
The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a fi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2017]
|
Ausgabe: | 2nd edition |
Schriftenreihe: | De Gruyter expositions in mathematics
Volume 42 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FHR01 FKE01 FLA01 TUM01 UBW01 UBY01 UPA01 FCO01 Volltext |
Zusammenfassung: | The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p › 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p › 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p › 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classifi cation of the simple Lie algebras over algebraically closed fi elds of characteristic › 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A. I. Kostrikin and A. A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic › 3 is given. Contents Tori in Hamiltonian and Melikian algebras 1-sections Sandwich elements and rigid tori Towards graded algebras The toral rank 2 case |
Beschreibung: | 1 Online-Ressource (viii, 382 Seiten) |
ISBN: | 9783110517606 |
DOI: | 10.1515/9783110517606 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044343797 | ||
003 | DE-604 | ||
005 | 20200629 | ||
007 | cr|uuu---uuuuu | ||
008 | 170609s2017 |||| o||u| ||||||eng d | ||
020 | |a 9783110517606 |9 978-3-11-051760-6 | ||
024 | 7 | |a 10.1515/9783110517606 |2 doi | |
035 | |a (ZDB-23-DGG)9783110517606 | ||
035 | |a (OCoLC)992488705 | ||
035 | |a (DE-599)BVBBV044343797 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-Aug4 |a DE-859 |a DE-860 |a DE-20 |a DE-91 |a DE-898 |a DE-739 |a DE-706 |a DE-1046 |a DE-1043 |a DE-858 | ||
100 | 1 | |a Strade, Helmut |d 1942- |e Verfasser |0 (DE-588)106816659 |4 aut | |
245 | 1 | 0 | |a Classifying the absolute toral rank two case |c Helmut Strade |
250 | |a 2nd edition | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a 1 Online-Ressource (viii, 382 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Simple Lie algebras over fields of positive characteristic / by Helmut Strade |v Volume 2 | |
490 | 1 | |a De Gruyter expositions in mathematics |v Volume 42 | |
520 | |a The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p › 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p › 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p › 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classifi cation of the simple Lie algebras over algebraically closed fi elds of characteristic › 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A. I. Kostrikin and A. A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic › 3 is given. Contents Tori in Hamiltonian and Melikian algebras 1-sections Sandwich elements and rigid tori Towards graded algebras The toral rank 2 case | ||
650 | 4 | |a Lie algebras, fields of positive characteristic, classification | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-051676-0 |
810 | 2 | |a by Helmut Strade |t Simple Lie algebras over fields of positive characteristic |v Volume 2 |w (DE-604)BV035441977 |9 2 | |
830 | 0 | |a De Gruyter expositions in mathematics |v Volume 42 |w (DE-604)BV004069300 |9 42 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110517606 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA17 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029746784 | ||
966 | e | |u https://doi.org/10.1515/9783110517606 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110517606 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110517606 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110517606 |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110517606 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110517606 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110517606 |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110517606 |l UBW01 |p ZDB-23-DMA |q ZDB-23-DMA17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110517606 |l UBY01 |p ZDB-23-DMA |q UBY_Paketkauf17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110517606 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110517606 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177579297472512 |
---|---|
any_adam_object | |
author | Strade, Helmut 1942- |
author_GND | (DE-588)106816659 |
author_facet | Strade, Helmut 1942- |
author_role | aut |
author_sort | Strade, Helmut 1942- |
author_variant | h s hs |
building | Verbundindex |
bvnumber | BV044343797 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110517606 (OCoLC)992488705 (DE-599)BVBBV044343797 |
doi_str_mv | 10.1515/9783110517606 |
edition | 2nd edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04597nmm a2200553zcb4500</leader><controlfield tag="001">BV044343797</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200629 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170609s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110517606</subfield><subfield code="9">978-3-11-051760-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110517606</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110517606</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992488705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044343797</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strade, Helmut</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106816659</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classifying the absolute toral rank two case</subfield><subfield code="c">Helmut Strade</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 382 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Simple Lie algebras over fields of positive characteristic / by Helmut Strade</subfield><subfield code="v">Volume 2</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">Volume 42</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p › 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p › 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p › 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classifi cation of the simple Lie algebras over algebraically closed fi elds of characteristic › 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A. I. Kostrikin and A. A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic › 3 is given. Contents Tori in Hamiltonian and Melikian algebras 1-sections Sandwich elements and rigid tori Towards graded algebras The toral rank 2 case</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras, fields of positive characteristic, classification</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-051676-0</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">by Helmut Strade</subfield><subfield code="t">Simple Lie algebras over fields of positive characteristic</subfield><subfield code="v">Volume 2</subfield><subfield code="w">(DE-604)BV035441977</subfield><subfield code="9">2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">Volume 42</subfield><subfield code="w">(DE-604)BV004069300</subfield><subfield code="9">42</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA17</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029746784</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">UBY_Paketkauf17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110517606</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044343797 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:50:19Z |
institution | BVB |
isbn | 9783110517606 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029746784 |
oclc_num | 992488705 |
open_access_boolean | |
owner | DE-Aug4 DE-859 DE-860 DE-20 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-739 DE-706 DE-1046 DE-1043 DE-858 |
owner_facet | DE-Aug4 DE-859 DE-860 DE-20 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-739 DE-706 DE-1046 DE-1043 DE-858 |
physical | 1 Online-Ressource (viii, 382 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA17 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA17 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DMA UBY_Paketkauf17 ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter expositions in mathematics |
series2 | Simple Lie algebras over fields of positive characteristic / by Helmut Strade De Gruyter expositions in mathematics |
spelling | Strade, Helmut 1942- Verfasser (DE-588)106816659 aut Classifying the absolute toral rank two case Helmut Strade 2nd edition Berlin ; Boston De Gruyter [2017] © 2017 1 Online-Ressource (viii, 382 Seiten) txt rdacontent c rdamedia cr rdacarrier Simple Lie algebras over fields of positive characteristic / by Helmut Strade Volume 2 De Gruyter expositions in mathematics Volume 42 The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p › 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p › 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p › 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classifi cation of the simple Lie algebras over algebraically closed fi elds of characteristic › 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A. I. Kostrikin and A. A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic › 3 is given. Contents Tori in Hamiltonian and Melikian algebras 1-sections Sandwich elements and rigid tori Towards graded algebras The toral rank 2 case Lie algebras, fields of positive characteristic, classification Erscheint auch als Druck-Ausgabe 978-3-11-051676-0 by Helmut Strade Simple Lie algebras over fields of positive characteristic Volume 2 (DE-604)BV035441977 2 De Gruyter expositions in mathematics Volume 42 (DE-604)BV004069300 42 https://doi.org/10.1515/9783110517606 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Strade, Helmut 1942- Classifying the absolute toral rank two case De Gruyter expositions in mathematics Lie algebras, fields of positive characteristic, classification |
title | Classifying the absolute toral rank two case |
title_auth | Classifying the absolute toral rank two case |
title_exact_search | Classifying the absolute toral rank two case |
title_full | Classifying the absolute toral rank two case Helmut Strade |
title_fullStr | Classifying the absolute toral rank two case Helmut Strade |
title_full_unstemmed | Classifying the absolute toral rank two case Helmut Strade |
title_short | Classifying the absolute toral rank two case |
title_sort | classifying the absolute toral rank two case |
topic | Lie algebras, fields of positive characteristic, classification |
topic_facet | Lie algebras, fields of positive characteristic, classification |
url | https://doi.org/10.1515/9783110517606 |
volume_link | (DE-604)BV035441977 (DE-604)BV004069300 |
work_keys_str_mv | AT stradehelmut classifyingtheabsolutetoralranktwocase |