Atmospheric evolution on inhabited and lifeless worlds:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom
Cambridge University Press
2017
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | xiv, 579 Seiten Illustrationen, Diagramme |
ISBN: | 9780521844123 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044330064 | ||
003 | DE-604 | ||
005 | 20180814 | ||
007 | t| | ||
008 | 170530s2017 xx a||| |||| 00||| eng d | ||
016 | 7 | |a 865400091 |2 DE-101 | |
020 | |a 9780521844123 |c hardback : GBP 54.99 |9 978-0-521-84412-3 | ||
035 | |a (OCoLC)974523373 | ||
035 | |a (DE-599)GBV865400091 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-703 |a DE-19 |a DE-20 | ||
084 | |a US 8030 |0 (DE-625)146733: |2 rvk | ||
100 | 1 | |a Catling, David C. |e Verfasser |0 (DE-588)1058750704 |4 aut | |
245 | 1 | 0 | |a Atmospheric evolution on inhabited and lifeless worlds |c David C. Catling, University of Washington, James F. Kasting, Pennsylvania State University |
264 | 1 | |a Cambridge, United Kingdom |b Cambridge University Press |c 2017 | |
300 | |a xiv, 579 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Atmosphäre |0 (DE-588)4003397-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Extrasolarer Planet |0 (DE-588)4456110-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Planet |0 (DE-588)4046212-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Atmosphäre |0 (DE-588)4003397-1 |D s |
689 | 0 | 1 | |a Extrasolarer Planet |0 (DE-588)4456110-6 |D s |
689 | 0 | 2 | |a Planet |0 (DE-588)4046212-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kasting, James F. |d 1953- |e Verfasser |0 (DE-588)171672690 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029733346&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029733346&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029733346 |
Datensatz im Suchindex
_version_ | 1819583457105281024 |
---|---|
adam_text |
Contents
Preface page xiii
PART I Principles of Planetary Atmospheres 1
1 The Structure of Planetary Atmospheres 3
LI Vertical Structure of Atmospheres 3
1.1.1 Atmospheric Temperature Structure: An Overview 3
1.1.2 Atmospheric Composition and Mass 6
1.1.3 Convection and Stability’ 14
1.2 Condensable Species on Terrestrial-Type Planets 24
1.2.1 Pure Water Atmospheres 24
1.2.2 Atmospheres with Multiple Condensable Species 25
1.2.3 Water in the Present-Day Martian Atmosphere 26
2 Energy and Radiation in Planetary Atmospheres 27
2.1 Energy Sources and Fluxes on Planets 27
2.1.1 Planetary Energy Sources 27
2.1.2 Radiation From the Sun and Other Stars 28
2.2 Planetary Energy Balance and the Greenhouse Effect 31
2.2.1 Orbits and Planetary Motion 31
2.2.2 Time-Averaged Incident Solar Flux 32
2.2.3 Albedo 32
2.2.4 Planetary Equilibrium Temperature 33
2.2.5 The Greenhouse Effect 34
2.2.6 Giant Planets, Internal Heat, and Equilibrium Temperature 36
2.3 Climate Feedbacks in the “Earth System” 37
2.3.1 Climate Sensitivity 37
2.3.2 The Emission Level and Radiative Time Constants 39
2.4 Principles of Radiation in Planetary Atmospheres 39
2.4.1 Basic Definitions and Functions in Radiative Transfer 40
2.4.2 Radiative Transfer in the Visible and Ultraviolet 42
2.4.3 Radiative Transfer in the Thermal Infrared 47
2.4.4 Level of Emission and the Meaning of “Optically Thick ” and “Optically Thin ” 51
2.4.5 Radiative and Radiative-Convective Equilibrium 53
2.5 Absorption and Emission of Radiation by Atmospheric Gases 61
2.5.1 Overview of Absorption Lines 62
2.5.2 Electric and Magnetic Dipole Moments 62
2.5.3 Rotational Transitions 63
2.5.4 Vibrational Transitions 65
v
VI
Contents
2.5.5 Electronic Transitions 66
2.5.6 Collision-Induced Absorption: Giant Planets, Titan, £ar/y Earth, and Vernis 67
2.5.7 Line Shapes and Broadening 68
2.5.8 Continuum Absorption 70
2.5.9 Band Transmission and Weak and Strong Absorption 70
2.6 Calculating Atmospheric Absorption in Climate Calculations 72
3 Essentials of Chemistry of Planetary Atmospheres 73
3.1 General Principles 73
3.1.1 Essentials of Thermodynamic Chemical Equilibrium 73
3.1.2 Chemical Kinetics of A tmospheric Gases 15
3.1.3 The Importance of Free Radicals 76
3.1.4 Three-Body (Termolecular) Reactions 11
3.1.5 Temperature Dependence of Reaction Rates 77
3.1.6 Photolysis 78
3.2 Surface Deposition 78
3.3 Earth’s Stratospheric and Tropospheric Chemistry 79
3.3.1 Earth's Stratospheric Chemistry 79
3.3.2 Earth's Tropospheric Chemistry 81
3.4 C02 Stability on Venus and Mars 82
3.5 C02 and Cold Thermospheres of Venus and Mars 83
3.6 Methane and Hydrocarbons on Outer Planets and Titan 83
4 Motions in Planetary Atmospheres 85
4.1 Introductory Concepts 85
4.1.1 Forces, Apparent Forces, and the Equation of Motion 85
4.1.2 Characteristic Force Balance Regimes in Atmospheres 89
4.2 The Zonal-Mean Meridional Circulation and Thermally Driven Jet Streams 94
4.2.1 The Two Types of Jet Stream: Thermally Driven and Eddy Driven 94
4.2.2 The Hadley Circulation and Subtropical Jets 95
4.2.3 Symmetric Hadley Circulation Theory 96
4.2.4 Asymmetric Hadley Circulations on Earth and Mars, and Monsoons 100
4.2.5 Hadley Circulations on Venus and Titan 101
4.2.6 Mean Meridional Circulation and Planetary Habitability 101
4.3 Eddy-Driven Jet Streams and Planetary Waves 102
4.3.1 Vortidty 102
4.3.2 Jet Forcing by Stirring or Friction 103
4.3.3 Planetary Waves 106
4.3.4 Effects of Vertical Variation 108
4.3.5 Planetary Wave Instability 111
4.3.6 Eddy-Driven Jets on the Outer Planets: Shallow Layer Atmospheres 1 13
4.3.7 Eddy-Driven Jets on the Outer Planets: Deep Atmospheres 113
4.3.8 A Shallow Atmosphere Model Coupled to the Deep Interior of Outer Planets 114
4.3.9 Ice Giants: Uranus and Neptune 115
4.4 Buoyancy Waves and Thermal Tides 115
4.4.1 Mechanism and Properties of Buoyancy Waves 115
4.4.2 Wave Generation, Breaking, and Impact on the Zonal Mean Flow 117
4.4.3 Atmospheric Tides 120
4.5 Superrotation 123
4.6 Transport by Eddy-Driven Circulations 125
4.6.1 The Brewer—Dobson Circulation and Mesospheric Circulation 125
4.6.2 Implications of Large-Scale Overturning Circulations for Atmospheric Evolution 126
4.7 Atmospheric Dynamics and Habitability: Future Prospects 127
Contents
vii
5 Escape of Atmospheres to Space 129
5.1 Historical Background to Atmospheric Escape 130
5.2 Overview of Atmospheric Escape Mechanisms 131
5.2.1 Thermal Escape Overview 131
5.2.2 Suprathermal (or Nonthermal) Escape, in Brief 134
5.2.3 Impact Erosion, in Brief 134
5.2.4 The Upper Limit of Diffusion-Limited Escape, in Brief 135
5.3 Breakdown of the Barometric Law 135
5.4 The Exobase or “Critical Level” 136
5.5 Escape Velocity 137
5.6 Jeans’Thermal Escape of Hydrogen 138
5.6.1 Concept and Mathematical Derivation 138
5.6.2 Effusion Velocity 141
5.7 Suprathermal (Nonthermal) Escape of Hydrogen 141
5.8 Upwards Diffusion and the “Diffusion-Limited Escape” Concept 143
5.8.1 Molecular Diffusion 145
5.8.2 Eddy Diffusion 144
5.8.3 Diffusion-Limited Escape of Hydrogen 145
5.8.4 Application of Diffusion-Limited Hydrogen Escape to Earth’s Atmosphere 146
5.9 Diffusion-Limited Hydrogen Escape Applied to Mars, Titan, and Venus 148
5.9.1 Mars 148
5.9.2 Titan 149
5.9.3 Venus 149
5.10 Hydrodynamic Escape 150
5.10.1 Conditions for Hydrodynamic Escape 150
5.10.2 Energy-Limited Escape 155
5.10.3 Density-Limited Hydrodynamic Escape 157
5.10.4 Maximum Molecular Mass Carried Away in Hydrodynamic Escape 158
5.11 Mass Fractionation by Hydrodynamic Escape 161
5.11.1 Fractionation Theory 161
5.11.2 Applications of Mass Fractionation in Hydrodynamic Escape: Noble Gas Isotopes 162
5.12 Impact Erosion of Planetary Atmospheres 165
5.13 Summary of the Fundamental Nature of Atmospheric Escape 166
PART II Evolution of the Earth’s Atmosphere 169
6 Formation of Earth’s Atmosphere and Oceans 171
6.1 Planetary Formation 171
6.1.1 Formation of Stars and Protoplanetary Disks 171
6.1.2 The Planetesimal Hypothesis 172
6.1.3 Planetary Migration: When Did the Gas and Dust Disappear? 175
6.2 Volatile Delivery to the Terrestrial Planets 175
6.2.1 The Equilibrium Condensation Model 175
6.2.2 Modem Accretion Models 111
6.2.3 D/H Ratios and their Implications for Water Sources 179
6.3 Meteorites: Clues to the Early Solar System 181
6.4 The Implications of the Abundances of Noble Gases and Other Elements 183
6.4.1 Atmophiles, Geochemical Volatiles, and Refractory Elements 183
6.4.2 Noble Gases 184
6.4.3 Early Degassing 186
6.5 Impact Degassing, Co-accretion of Atmospheres, and Ingassing 188
6.5.1 Laboratory Evidence for Impact Degassing 188
Contents
6.5.2 Formation of Steam and Reducing Atmospheres During Accretion 188
6.5.3 Ingassing 189
6.6 Moon Formation and its Implications for Earth’s Volatile History 191
6.6.1 The Giant Impact Hypothesis 191
6.6.2 The Post-Impact Atmosphere and Loss of Volatiles 191
6.7 “Late Heavy Bombardment”: Causes and Consequences 192
6.8. The Early Atmosphere: the Effect of Planetary Differentiation and Rotation Rate 195
6.8.1 Core Formation and its Effect on Atmospheric Chemistry 195
6.8.2 Day Length, the Lunar Orbit, and the Early Steam Atmosphere 196
7 Volcanic Outgassing and Mantle Redox Evolution 198
7.1 Historical Context: Strongly and Weakly Reduced Atmospheres 198
7.2 Volcanic Outgassing and Metamorphic Degassing of Major Volatile Species 200
7.2.1 Mechanisms of Volcanic Outgassing 200
7.2.2 Outgassing and Metamorphic Degassing of C02 202
7.2.3 Subaerial Outgassing of H2O, S02, H2S, and N2 203
7.3 Oxidation State of the Mantle 205
7.3.1 Oxidation State of the Present Upper Mantle 205
7.3.2 How the Mantle Became Oxidized 206
7.4 Release of Reduced Gases From Subaerial Volcanism 208
7.5 Reduced Gases Released From Submarine Volcanism and Hydrothermal Systems 210
7.5.1 H2S and H2 210
7.5.2 CH4 211
7.6 Past Rates of Volcanic Outgassing 212
7.7 Summary 213
8 Atmospheric and Global Redox Balance 215
8.1 Principles of Redox Balance 216
8.2 H2 Budget of the Prebiotic Atmosphere: Approximate Solution 216
8.3 Rigorous Treatment of Atmospheric Redox Balance 218
8.4 Global Redox Budget of the Early Earth 221
8.5 Organic Carbon Burial and the Carbon Isotope Record 223
8.6 Redox Indicators for Changes in Atmospheric Oxidation State 227
8.6.1 Holland’s f-Value Analysis 227
8.6.2 The Catling and Claire Roxy Parameter 230
9 The Prebiotic and Early Postbiotic Atmosphere 231
9.1 N2 and C02 Concentrations in the Primitive Atmosphere 231
9.2 Prebiotic 02 Concentrations 232
9.2.1 Dependence of 02 on C02 233
9.2.2 Dependence of 02 on H2 235
9.2.3 Effect of Higher UV Fluxes on 02 and 0$ 236
9.3 Prebiotic Synthesis of Organic Compounds in Weakly Reduced Atmospheres 237
9.3.1 Synthesis of RNA Building Blocks: H2C0 and HCN 238
9.3.2 CO as a Prebiotic Compound 239
9.4 When Did Life Originate? 240
9.4.1 Evidence from Microfossils and Stromatolites 240
9.4.2 Carbon Isotopic Evidence for Early Life 243
9.4.3 Molecular Biomarkers 244
9.5 The Molecular Phylogenetic Record of Life 244
9.6 Early Anaerobic Metabolisms and Their Effect on the Atmosphere 246
9.6.1 Heterotrophy and Fermentation 247
Contents
9.6.2 Methanogenesis 247
9.6.3 Sulfur Metabolism and Sulfate Reduction 248
9.6.4 Nitrogen Fixation and Nitrate Respiration 249
9.6.5 Anoxygenic Photosynthesis 250
9.7 Detailed Modeling of H2-Based Ecosystems 251
9.7. J Atmosphere-Ocean Gas Exchange: the Stagnant Film Model 252
9.7.2 Models of H2-Based Arc he an Ecosystems 252
9.8 Comparing With the Carbon Isotope Record 255
10 The Rise of Oxygen and Ozone in Earth’s Atmosphere 257
10.1 Co-evolution of Life and Oxygen: an Overview 257
10.2 Controls on Օշ Levels 260
10.2.1 Redox Budgeting for the Modem Օշ-Rich System 260
10.2.2 The “Net” Source Flux of Oշ 261
10.2.3 The 02 Sink Fluxes 263
10.2.4 Generalized History of Atmosphere-Ocean Redox 265
10.3 Evidence for a Paleoproterozoic Rise of Օշ 266
10.3.1 Continental Indicators: Paleosols, Detrital Grains, and Redbeds 266
10.3.2 Banded Iron Formations 267
10.3.3 Concentration of Redox-Sensitive Elements and the Rise of Oxygen 269
10.3.4 Iron Spéciation: Ocean Anoxia or Euxinia, and the Rise of Oxygen 270
10.4 Mass-Dependent Stable Isotope Records and the Rise of Oxygen 272
10.4.1 Carbon isotopes 272
10.4.2 Sulfur Isotopes 273
10.4.3 Nitrogen Isotopes 274
10.4.4 Transition Metal (Iron, Chromium, and Molybdenum) and Non-Metal Isotopes (Selenium) 275
10.5 Mass-Independent Fractionation of Sulfur Isotopes and the Rise of Oxygen 276
10.6 When Did Oxygenic Photosynthesis Appear? 279
10.6.1 Geochemical Evidence for 02 Before the Great Oxidation Event 279
10.6.2 Fossil and Biomarker Evidence for 02 Before the Great Oxidation Event 281
10.7 Explaining the Rise of Օշ 281
10.7.1 General Conditions for an Anoxic Versus Oxic Atmosphere 281
10.7.2 Hypotheses for an Increasing Flux of 02 284
10.7.3 Hypotheses for a Decreasing Sink of 02 284
10.8 Atmospheric Chemistry of the Great Oxidation Event 289
10.8.1 A Great Collapse of Methane 289
10.8.2 The Formation of a Stratospheric Ozone Shield 291
10.8.3 Did the Rise of 02 Affect Atmospheric N2 Levels? 291
10.9 The Neoproterozoic Oxidation Event (NOE) or Second Rise of Oxygen 292
10.9.1 Evidence for Neoproterozoic Oxygenation 292
10.9.2 What Caused the Second Rise of Oxygen? 294
10.10 Phanerozoic Evolution of Atmospheric Օշ 296
10.11 Օշ and Advanced Life in the Cosmos 297
11 Long-Term Climate Evolution 299
II. I Solar Evolution 299
11.2 Implications for Planetary Surface Temperatures: Sagan and Mullen’s Model 301
11.3 Geological Constraints on Archean and Hadean Surface Temperatures 302
11.3.1 Glacial Constraints on Տաք ace Temperature 302
11.3.2 Isotopic Constraints on Sutface Temperature 303
I 1.4 Solving the Faint Young Sun Problem with C02 304
11.4.1 The Carbonate-Silicate Cycle 304
11.4.2 Feedbacks in the Carbonate-Silicate Cycle and a Possible Solution to the Faint Young Sun Problem 306
Contents
11.4.3 Geochemical Constraints on Past C02 Concentrations 307
11.5 Clouds and the Faint Young Sun Problem 310
11.6 Effect of Reducing Gases on Archean Climate 310
11.6.1 Methane and Climate: Greenhouse and Anti-Greenhouse Effects 311
11.6.2 Fractal Organic Haze and UV Shielding of Ammonia 313
11.6.3 Effect of H2 on A rchean Climate 314
11.7 The Gaia Hypothesis 315
11.8 N2, Barometric Pressure, and Climate 315
11.9 The Warm and Stable Mid-Proterozoic Climate 316
11.9.1 Greenhouse Warming by CH4 316
11.9.2 Greenhouse Warming by N20 318
11.10 The Neoproterozoic “Snowball Earth” Episodes 318
11.10.1 Geologic Evidence for Snowball Earth 318
11.10.2 AIternative Models to Explain Low-Latitude Glaciation 319
11.10.3 Triggering a Snowball Earth 321
11.10.4 Recovery from Snowball Earth 322
11.10.5 Survival of the Photosynthetic Biota: the Thin-lce Model and Narrow Waterbelt State 323
I l.l I Phanerozoic Climate Variations 325
PART III Atmospheres and Climates on Other Worlds 327
12 Mars 329
12.1 Introduction to Mars 329
12.1.1 Overview of Mars 329
12.1.2 The Geologic Timescale for Mars 332
12.1.3 The Basis of our Knowledge: Spacecraft Data and Martian Meteorites 333
12.2 The Present-Day Atmosphere and Climate of Mars 335
12.2.1 Composition and Thickness of the Present Atmosphere 335
12.2.2 Climate and Meteorology 336
12.2.3 Atmospheric Chemistry 338
12.2.4 The Escape of H, O, C, and N 340
12.3 Volatile Inventory: Present and Past 342
12.3.1 The Present-Day Volatile Inventories 342
12.3.2 Past Volatile Inventory 345
12.3.3 Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence 349
12.4 Evidence for Past Climate Change and Different Atmospheres 351
12.4.1 Geomorphic Evidence of Possible Water Flow 351
12.4.2 Mineralogy and Sedimentology 355
12.5 Explaining the Early Climate of Mars 360
12.5.1 The Faint Young Sun Problem 360
12.5.2 Mechanisms for Producing Early Climates Conducive to Fluvial Erosion 361
! 2.6 Effect of Orbital Change on Past Martian Climate 366
12.7 Wind Modification of the Surface 367
12.8 Unanswered Questions of Mars’ Astrobiology and Atmospheric Evolution 368
13 Evolution of Venus’Atmosphere 370
13.1 Current State of Venus’ Atmosphere 370
13.1.1 Atmospheric Temperature and Composition: the Concept of “Excess Volatiles” 370
13.1.2 Cloud Composition and Photochemistry 373
13.1.3 Atmospheric Circulation 375
13.2 The Solid Planet: Is Plate Tectonics Active on Venus? 376
13.3 Formation of Venus’ Atmosphere: Wet or Dry? 378
Contents
13.4 The Runaway Greenhouse 379
13.4.1 The Classical Runaway Greenhouse 379
13.4.2 A Simple Approximation to the Outgoing Infrared Flux from a Runaway Greenhouse Atmosphere 381
13.4.3 More Rigorous Limits on Outgoing Infrared Radiation from Gray Atmospheres 382
13.4.4 Radiation Limits from Non-Gray Models 384
13.4.5 Evolution of Venus’ Atmosphere: the “Moist Greenhouse” 387
13.5 Stability of Venus' Present Atmosphere 389
13.6 Implications for Earth and Earth-Like Planets 390
13.6.1 Can CO2 Cause a Runaway Greenhouse on Earth? 390
13.6.2 Future Evolution of Earth’s Climate 391
14 Giant Planets and their Satellites 393
14.1 Giant Planets 393
14.1.1 Current Atmospheres 393
14.1.2 Thermal Evolution of Giant Planets and their Atmospheres 395
14.1.3 Thermal (Hydrodynamic) Escape on Hot Giant Exoplanets 396
14.2 Tenuous Atmospheres on Icy Worlds 397
14.2.1 Overview of Outer Satellite Atmospheres 397
14.2.2 Tenuous Volcanic or Cryovolcanic Atmospheres 399
14.2.3 Tenuous 02-Rich and C02-Rich Atmospheres 400
14.2.4 The Nitrogen Atmospheres of Triton and Pluto 401
14.3 The Dense Atmosphere on Titan versus the Barren Galilean Satellites 404
14.4 Titan 405
14.4.1 Overview 405
14.4.2 Titan’s Atmosphere: Structure, Climate, Chemistry, and Methane Cycle 407
14.4.3 Atmospheric Escape 415
14.4.4 Origin and Evolution of Titan’s Atmosphere 417
14.4.5 Life on Titan: “Weird Life” or Liquid Water Life 420
14.5 The Exoplanet Context for Outer Planets and their Satellites 421
15 Exoplanets: Habitability and Characterization 422
15.1 The Circumstellar Habitable Zone 422
15.1.1 Requirements for Life: the Importance of Liquid Water 422
15.1.2 Historical Treatment of the Habitable Zone 423
15.1.3 Modern Limits on the Habitable Zone Around the Sun 424
15.1.4 Empirical Estimates of Habitable Zone Boundaries 426
15.1.5 Habitable Zones Around Other Main Sequence Stars 427
15.1.6 Other Concepts of the Habitable Zone 431
15.1.7 The Galactic Habitable Zone 432
15.2 Finding Planets Around Other Stars 432
15.2.1 The Astrometric Method 433
15.2.2 The Radial Velocity Method 433
15.2.3 The Transit Method and Results from NASA ’s Kepler Mission 434
15.2.4 Gravitational Microlensing 436
15.2.5 Direct Detection Methods: Terrestrial Planet Finder (TPF) and Darwin 437
15.3 Characterizing Exoplanet Atmospheres and Surfaces 438
15.3.1 The Near Term: Transit Spectra of Planets Around Low-Mass Stars 438
15.3.2 The Future: Direct Detection of Habitable Planets 440
15.4 Interpretation of Possible Biosignatures 444
15.4.1 The Criterion of Extreme Thermodynamic Disequilibrium 444
15.4.2 Classification of Biosignature Gases 446
15.4.3 Is 02 by Itself a Reliable Biosignature? 446
15.5 Parting Thoughts 448
Contents
Appendix A: One-Dimensional Climate Model 449
A. I Numerical Method 449
A.2 Calculation of Radiative Fluxes 450
A.3 Treatment of Water Vapor 452
A. 4 Treatment of Clouds 454
Appendix B: Photochemical Models 455
B. I Photochemical Model Equations 455
B.2 Finite Differencing the Model Equations 456
B.3 Solving the System of Ordinary Differential Equations (ODEs) 457
B.4 Boundary Conditions 458
B.5 Including Particles 459
B.6 Setting up the Chemical Production and Loss Matrices 460
B.7 Long- and Short-Lived Species and Ill-Conditioned Matrices 460
B.8 Rainout, Lightning, and Photolysis 461
Appendix C: Atomic States and Term Symbols 463
Bibliography 467
Index 562
Color plate section between pages 298-299
Atmospheric Evolution on
Inhabited and Lifeless Worlds
As the search for Harth-like exoplancls ¿gathers pace. in order to
understand them, we need comprehensive theories for how plan-
etary atmospheres form and evolve. Written by two well-known
planetary scientists, this text explains the physical and chemical
principles of atmospheric evolution and planetary atmospheres,
in the context of how atmospheric composition and climate
determine a planet's habitability. The authors survey our current
understanding of* the atmospheric evolution and climate on Karth.
on other rocky planets within our Solar System, and on planets
far beyond. Incorporating a rigorous mathematical treatment,
they cover the concepts and equations governing a range of
topics, including atmospheric chemistry, thermodynamics, radia-
tive transfer, and atmospheric dynamics, and provide an inte-
grated v։ew? of planetary' atmospheres and their evolution. 'I his
interdisciplinary text is an invaluable onostop resource tor
graduate-level students and researchers working across the fields
of atmospheric science, geochemistry, planetary science, astro-
biology. and astronomy.
David C. Catling is a Professor in Karth and Space Sciences nl the
University of Washington. Seattle, who studies planetary' sur-
faces. atmospheres, and habitability. He actively participates in
the research ill* NASA's Astrobiology Institute and is the author
of Astrobiofoti*y; A Very Short hitroditctiott (2013)- He lias taught
courses in planetary atmospheres, planetary geology* astrobiol-
ogy. and global environmental change at undergraduate and
graduate levels. He was also an investigator for NASA s Phoenix
Mars Pander, which successfully operated in the arctic of Mars
during 2(X)8.
James F. Kasting is an Kvan Pugh Professor of Cieoscicnces at The
Pennsylvania State University, and an acknowledged expert on
atmospheric and climate evolution. He is the author of the popu-
lar book. /low՝ to litui a Habitable Piatici (20 10) and coauthor of
the introductory textbook. Hie Karth System (3rd cdn. 2000). I ։\
Kasting has received numerous awards, including that of bellow
of the American Oeophysical Union, the Ocochcmical Society,
the International Society for the Study of the Origin of' Kite
(ISSOK). the American Academy for the Advancement of Sci-
ence. and the American Academy of Sciences. He received the
Oparin Medal from ISSOK in 2008. and the Stanley Miller Medal
from the National Academy of Sciences in 20 lb. |
any_adam_object | 1 |
author | Catling, David C. Kasting, James F. 1953- |
author_GND | (DE-588)1058750704 (DE-588)171672690 |
author_facet | Catling, David C. Kasting, James F. 1953- |
author_role | aut aut |
author_sort | Catling, David C. |
author_variant | d c c dc dcc j f k jf jfk |
building | Verbundindex |
bvnumber | BV044330064 |
classification_rvk | US 8030 |
ctrlnum | (OCoLC)974523373 (DE-599)GBV865400091 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV044330064</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180814</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">170530s2017 xx a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">865400091</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521844123</subfield><subfield code="c">hardback : GBP 54.99</subfield><subfield code="9">978-0-521-84412-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)974523373</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV865400091</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">US 8030</subfield><subfield code="0">(DE-625)146733:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Catling, David C.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1058750704</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atmospheric evolution on inhabited and lifeless worlds</subfield><subfield code="c">David C. Catling, University of Washington, James F. Kasting, Pennsylvania State University</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 579 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Atmosphäre</subfield><subfield code="0">(DE-588)4003397-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extrasolarer Planet</subfield><subfield code="0">(DE-588)4456110-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Planet</subfield><subfield code="0">(DE-588)4046212-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Atmosphäre</subfield><subfield code="0">(DE-588)4003397-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Extrasolarer Planet</subfield><subfield code="0">(DE-588)4456110-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Planet</subfield><subfield code="0">(DE-588)4046212-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kasting, James F.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)171672690</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029733346&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029733346&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029733346</subfield></datafield></record></collection> |
id | DE-604.BV044330064 |
illustrated | Illustrated |
indexdate | 2024-12-27T09:00:09Z |
institution | BVB |
isbn | 9780521844123 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029733346 |
oclc_num | 974523373 |
open_access_boolean | |
owner | DE-83 DE-703 DE-19 DE-BY-UBM DE-20 |
owner_facet | DE-83 DE-703 DE-19 DE-BY-UBM DE-20 |
physical | xiv, 579 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Catling, David C. Verfasser (DE-588)1058750704 aut Atmospheric evolution on inhabited and lifeless worlds David C. Catling, University of Washington, James F. Kasting, Pennsylvania State University Cambridge, United Kingdom Cambridge University Press 2017 xiv, 579 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Atmosphäre (DE-588)4003397-1 gnd rswk-swf Extrasolarer Planet (DE-588)4456110-6 gnd rswk-swf Planet (DE-588)4046212-2 gnd rswk-swf Atmosphäre (DE-588)4003397-1 s Extrasolarer Planet (DE-588)4456110-6 s Planet (DE-588)4046212-2 s DE-604 Kasting, James F. 1953- Verfasser (DE-588)171672690 aut Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029733346&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029733346&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Catling, David C. Kasting, James F. 1953- Atmospheric evolution on inhabited and lifeless worlds Atmosphäre (DE-588)4003397-1 gnd Extrasolarer Planet (DE-588)4456110-6 gnd Planet (DE-588)4046212-2 gnd |
subject_GND | (DE-588)4003397-1 (DE-588)4456110-6 (DE-588)4046212-2 |
title | Atmospheric evolution on inhabited and lifeless worlds |
title_auth | Atmospheric evolution on inhabited and lifeless worlds |
title_exact_search | Atmospheric evolution on inhabited and lifeless worlds |
title_full | Atmospheric evolution on inhabited and lifeless worlds David C. Catling, University of Washington, James F. Kasting, Pennsylvania State University |
title_fullStr | Atmospheric evolution on inhabited and lifeless worlds David C. Catling, University of Washington, James F. Kasting, Pennsylvania State University |
title_full_unstemmed | Atmospheric evolution on inhabited and lifeless worlds David C. Catling, University of Washington, James F. Kasting, Pennsylvania State University |
title_short | Atmospheric evolution on inhabited and lifeless worlds |
title_sort | atmospheric evolution on inhabited and lifeless worlds |
topic | Atmosphäre (DE-588)4003397-1 gnd Extrasolarer Planet (DE-588)4456110-6 gnd Planet (DE-588)4046212-2 gnd |
topic_facet | Atmosphäre Extrasolarer Planet Planet |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029733346&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029733346&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT catlingdavidc atmosphericevolutiononinhabitedandlifelessworlds AT kastingjamesf atmosphericevolutiononinhabitedandlifelessworlds |