Learning image and video representations based on sparsity priors:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
München
2017
|
Schlagworte: | |
Online-Zugang: | kostenfrei https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20170428-1335623-1-9 Inhaltsverzeichnis |
Beschreibung: | v, ix, 130 Seiten Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044320892 | ||
003 | DE-604 | ||
005 | 20170627 | ||
007 | t | ||
008 | 170522s2017 a||| m||| 00||| eng d | ||
035 | |a (OCoLC)989516787 | ||
035 | |a (DE-599)BVBBV044320892 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |a DAT 001d |2 stub | ||
100 | 1 | |a Wei, Xian |e Verfasser |4 aut | |
245 | 1 | 0 | |a Learning image and video representations based on sparsity priors |c Xian Wei |
264 | 1 | |a München |c 2017 | |
300 | |a v, ix, 130 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität München |d 2017 | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:91-diss-20170428-1335623-1-9 |
856 | 4 | 1 | |u https://mediatum.ub.tum.de/node?id=1335623 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | |u https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20170428-1335623-1-9 |x Resolving-System | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029724361&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029724361 |
Datensatz im Suchindex
_version_ | 1804177539118137344 |
---|---|
adam_text | CONTENTS
LIST O F SYM BOLS III
LIST O F FIGURES V
LIST O F TABLES IX
1 INTRODUCTION 1
1.1 THE ROLE OF IMAGE REPRESENTATION IN COMPUTER V ISION
...................................
1
1.2 SPARSE REPRESENTATION IN IMAGE
PROCESSING........................................................ 7
1.3 CONTRIBUTIONS AND THE DISSERTATION OUTLINE
..................................................... 10
2 SPARSE CODING AND THE R ELATED O PTIM IZATION A LGORITHM S 13
2.1 SPARSE REPRESENTATION AND THE STATE-OF-THE-ART OPTIMIZATION
ALGORITHMS . . . 13
2.1.1 CONVEX RELAXATION A LGORITHM
S.............................................................. 14
2.1.2 ITERATIVE SHRINKAGE/ THRESHOLDING A LGORITHM S
......................................
16
2.1.3 GREEDY PURSUIT A LGORITHM
S.................................................................... 16
2.1.4 NON-CONVEX OPTIMIZATION
ALGORITHMS..................................................... 17
2.2 DICTIONARY L E A RN IN G
...........................................................................................
19
2.2.1 METHOD OF OPTIMAL DIRECTIONS AND ITS EXTENSIONS
....................................
21
2.2.2 CLUSTERING BASED M
ETHODS..........................................................................
22
2.2.3 LAGRANGE DUAL M
ETHOD................................................................................
23
2.2.4 LEARNING DICTIONARY BASED ON STOCHASTIC GRADIENT DESCENT
ALGORITHMS 24
3 A TWO-LAYER R EPRESENTATION LEARNING FRAMEWORK 25
3.1
INTRODUCTION.............................................................................................................
25
3.2 THE MAIN OPTIMIZATION P RO B LE M
..........................................................................
28
3.3 LOCAL DIFFERENTIABILITY OF SPARSE REPRESENTATION WITH CONVEX
SPARSITY PRIORS . 30
3.3.1 LOCAL DIFFERENTIABILITY OF SPARSE REPRESENTATION
...................................
30
3.3.2 CONVEX SPARSITY P
RIORS................................................................................
32
3.3.3 LASSO AND ELASTIC N E T
................................................................................
35
3.3.4 KULLBACK-LEIBLER DIVERGENCE
.......................................................................
36
3.4 RESOLVING THE MAIN PROBLEM USING GEOMETRIC O PTIM IZATION
..............................
37
3.4.1 GEOMETRIC O PTIM
IZATION.............................................................................
37
3.4.2 GEOMETRY OF THE PRODUCT OF K UNIT S P H E RE
S.............................................40
3.4.3 GEOMETRY OF GRASSMANN MANIFOLD
...........................................................
41
4 SPARSE LINEAR D YNAM ICAL SYSTEM S FOR M ODELING D YNAM IC TEXTURES 45
4.1
INTRODUCTION.............................................................................................................
45
4.2 MODELING DYNAMICAL TEXTURES USING LINEAR DYNAMIC S YSTEM S
...........................
48
4.3 SPARSE LINEAR DYNAMICAL
SYSTEMS..........................................................................
50
4.3.1 A DICTIONARY LEARNING MODEL FOR DYNAMIC S C E N E
....................................
50
4.3.2 OPTIMIZATION ALGORITHM FOR S L D S
...........................................................
55
4.4 DTS CLASSIFICATION USING SLDS MODEL
.................................................................
57
4.4.1 GLOBAL SLDS
CLASSIFIER................................................................................
57
4.4.2 PATCH-BASED SLDS CLASSIFIER
.................................................................... 59
4.5 NUMERICAL EXPERIMENTS FOR EVALUATING THE SLDS M O D E L
....................................
61
4.5.1 D
ATASETS.......................................................................................................
61
4.5.2 DYNAMIC TEXTURES
SYNTHESIS.......................................................................
64
4.5.3 DYNAMIC TEXTURES CLASSIFICATION
..............................................................
65
4.6 S U M M ARY
................................................................................................................
67
5 SPARSE LOW D IM ENSIONAL R EPRESENTATION LEARNING 69
5.1
INTRODUCTION.............................................................................................................
69
5.2 OPTIMIZATION OF TRACE QUOTIENT CRITERION
........................................................ 70
5.3 THE PROPOSED JOINT LEARNING
FRAMEWORK........................................................... 71
5.3.1 A GENERIC COST
FUNCTION.........................................................................
71
5.3.2 A GEOMETRIC CONJUGATE GRADIENT
ALGORITHM......................................... 72
5.4 APPLICATIONS OF THE SPARLOW M ODEL
...................................................................
76
5.4.1 UNSUPERVISED LEARNING METHODS
........................................................... 76
5.4.2 SUPERVISED LEARNING M ETH O D S
................................................................
79
5.4.3 SEMI-SUPERVISED LEARNING M E TH O D S
...........................................................
82
5.5 EXPERIMENTAL E
VALUATIONS......................................................................................84
5.5.1 EXPERIMENTAL S E TTIN G
S................................................................................84
5.5.2 EVALUATION OF UNSUPERVISED SPARLOW
........................................................
85
5.5.3 EVALUATION OF SUPERVISED S P A RL O W
...........................................................
92
5.5.4 EVALUATION OF SEMI-SUPERVISED SPARLOW
...................................................96
5.5.5 OBJECT C
ATEGORIZATION................................................................................97
5.5.6 PARAMETERS
SENSITIVITY..............................................................................
104
5.5.7 OPTIMIZATION
PROCESS.................................................................................
106
5.6 S U M M ARY
..............................................................................................................
106
6 C ONCLUSIONS AND FUTURE WORK 109
6.1
CONCLUSIONS............................................................................................................109
6.2 FUTURE WORK
.........................................................................................................110
BIBLIOGRAPHY
113
|
any_adam_object | 1 |
author | Wei, Xian |
author_facet | Wei, Xian |
author_role | aut |
author_sort | Wei, Xian |
author_variant | x w xw |
building | Verbundindex |
bvnumber | BV044320892 |
classification_tum | DAT 001d |
collection | ebook |
ctrlnum | (OCoLC)989516787 (DE-599)BVBBV044320892 |
discipline | Informatik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01546nam a2200337 c 4500</leader><controlfield tag="001">BV044320892</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170627 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170522s2017 a||| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)989516787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044320892</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 001d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Xian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning image and video representations based on sparsity priors</subfield><subfield code="c">Xian Wei</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">v, ix, 130 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität München</subfield><subfield code="d">2017</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:91-diss-20170428-1335623-1-9</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://mediatum.ub.tum.de/node?id=1335623</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20170428-1335623-1-9</subfield><subfield code="x">Resolving-System</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029724361&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029724361</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV044320892 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:49:41Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029724361 |
oclc_num | 989516787 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | v, ix, 130 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
record_format | marc |
spelling | Wei, Xian Verfasser aut Learning image and video representations based on sparsity priors Xian Wei München 2017 v, ix, 130 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Dissertation Technische Universität München 2017 (DE-588)4113937-9 Hochschulschrift gnd-content Erscheint auch als Online-Ausgabe urn:nbn:de:bvb:91-diss-20170428-1335623-1-9 https://mediatum.ub.tum.de/node?id=1335623 Verlag kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20170428-1335623-1-9 Resolving-System DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029724361&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wei, Xian Learning image and video representations based on sparsity priors |
subject_GND | (DE-588)4113937-9 |
title | Learning image and video representations based on sparsity priors |
title_auth | Learning image and video representations based on sparsity priors |
title_exact_search | Learning image and video representations based on sparsity priors |
title_full | Learning image and video representations based on sparsity priors Xian Wei |
title_fullStr | Learning image and video representations based on sparsity priors Xian Wei |
title_full_unstemmed | Learning image and video representations based on sparsity priors Xian Wei |
title_short | Learning image and video representations based on sparsity priors |
title_sort | learning image and video representations based on sparsity priors |
topic_facet | Hochschulschrift |
url | https://mediatum.ub.tum.de/node?id=1335623 https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20170428-1335623-1-9 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029724361&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT weixian learningimageandvideorepresentationsbasedonsparsitypriors |