Lead-acid batteries for future automobiles:
Front Cover -- Lead - Acid Batteries for FutureAutomobiles -- Lead-Acid Batteries for Future Automobiles -- Copyright -- Contents -- List of Contributors -- About the Editors -- Preface -- Abbreviations -- 1 - Overview -- 1 - Development trends for future automobiles and their demand on the battery...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
[2017]
|
Schlagworte: | |
Online-Zugang: | C |
Zusammenfassung: | Front Cover -- Lead - Acid Batteries for FutureAutomobiles -- Lead-Acid Batteries for Future Automobiles -- Copyright -- Contents -- List of Contributors -- About the Editors -- Preface -- Abbreviations -- 1 - Overview -- 1 - Development trends for future automobiles and their demand on the battery -- 1.1 Lead-acid batteries in automobiles: still good enough? -- 1.2 Requirements in the automotive industry -- 1.2.1 Requirements cascade and V-Model -- 1.2.2 Robustness and reliability -- 1.2.3 Materials, environmental, recycling -- 1.3 Vehicle level requirements -- 1.3.1 Power-supply system functions -- 1.3.2 Drivetrain electrification functions -- 1.4 Low-volt system topology options for advanced power supply and mild powertrain hybridization -- 1.4.1 12-V single voltage single battery -- 1.4.2 12-V dual (or multi) storage devices -- 1.4.3 12-V+48-V dual voltage, dual-storage devices -- 1.4.4 12-V+high voltage hybrid traction -- 1.5 Upcoming storage system requirements -- 1.5.1 Usable versus rated capacity -- 1.5.2 Discharge power performance -- 1.5.3 Shallow-cycle-life -- service life in partial state-of-charge operation -- 1.5.4 Dynamic charge-acceptance -- 1.5.5 Battery monitoring and management -- 1.5.6 Package and ambient conditions, weight -- 1.6 Discussion -- List of abbreviations -- References -- 2 - Overview of batteries for future automobiles -- 2.1 General requirements for batteries in electric vehicles -- 2.2 Energy storage in lead-acid batteries -- 2.3 Alkaline batteries -- 2.3.1 Nickel-cadmium batteries -- 2.3.1.1 Automotive applications -- 2.3.1.2 Cell chemistry -- Discharge processes -- Thermodynamic data -- 2.3.1.3 Nickel electrode -- 2.3.1.4 Cadmium electrode -- 2.3.1.5 Open nickel-cadmium cells -- 2.3.1.6 Gas-tight nickel-cadmium cell -- 2.3.1.7 Operating behaviour and heat management -- Charging methods 2.3.2 Nickel-metal-hydride batteries (NiMH) -- 2.3.2.1 Automotive applications -- 2.3.2.2 Cell chemistry -- Discharge processes -- 2.3.2.3 Negative metal-hydride electrode -- 2.3.2.4 Operating behaviour and heat management -- 2.3.2.5 Cell design -- 2.3.3 Nickel-zinc batteries -- 2.3.3.1 Automotive applications -- 2.3.3.2 Cell chemistry -- Discharge reaction -- Charge reaction -- 2.4 High-temperature sodium batteries -- 2.4.1 Automotive applications -- 2.4.2 Sodium-nickel chloride battery (ZEBRA) -- 2.4.2.1 Cell chemistry -- Discharge reactions -- 2.4.2.2 Operating behaviour -- 2.4.3 Sodium-sulfur battery -- 2.5 Lithium-ion batteries -- 2.5.1 Automotive applications -- 2.5.1.1 Battery electric vehicles -- 2.5.1.2 Stop-start vehicles/micro-/mild-hybrid electric vehicles -- 2.5.1.3 Challenges -- Low temperature behaviour -- High-temperature behaviour -- Safety -- Costs -- 2.5.2 Cell chemistry -- 2.5.3 Negative electrode materials (discharge: anodes) -- 2.5.3.1 Graphite -- 2.5.3.2 Lithium titanate (LTO) -- 2.5.3.3 Lithium alloys -- 2.5.4 Positive electrode materials (discharge: cathodes) -- 2.5.4.1 Lithium cobalt oxide (LCO) -- 2.5.4.2 Lithium nickel oxides (LNO and NCA) -- 2.5.4.3 Solid solutions of manganese oxide Li(Ni,Mn,Co)O2 (NMC) -- 2.5.4.4 Lithium manganese spinel LiMn2O4 (LMO) -- 2.5.4.5 Lithium iron phosphate (LFP) -- 2.5.4.6 Advanced materials in development -- 2.5.5 Electrolyte -- 2.5.5.1 Organic liquid electrolytes -- 2.5.5.2 Ionic liquids -- 2.5.5.3 Solid electrolytes -- 2.5.6 Separator -- 2.5.7 Cell and battery design -- 2.5.8 Performance data, life and ageing -- 2.5.9 Cost -- 2.6 Power sources after Lithium-ion -- 2.6.1 Lithium-sulfur battery -- 2.6.2 Lithium-air battery -- 2.6.3 All-solid-state lithium batteries -- 2.6.4 Metal-air batteries -- 2.6.5 Metal-ion batteries beyond lithium -- 2.6.6 Halide battery -- 2.6.7 Redoxflow batteries 2.7 Supercapacitors -- 2.7.1 Automotive applications -- 2.7.2 Carbon technology -- 2.7.3 Hybrid systems -- 2.8 Fuel cells -- 2.8.1 Automotive applications -- 2.8.2 Cell chemistry and cell design -- References -- 3 - Lead-acid battery fundamentals -- 3.1 Principles of operation -- 3.2 Open-circuit voltage -- Positive electrode -- Negative electrode -- 3.3 Voltage during discharge and charge -- 3.4 Designs and manufacture -- 3.4.1 Pasted plates -- 3.4.2 Tubular plates -- 3.4.3 Spiral (wound) plates -- 3.4.4 Enhanced flooded batteries -- 3.4.5 Valve-regulated batteries -- 3.4.6 UltraBatteryTM -- 3.4.7 Supercapacitor hybrid -- 3.5 Charging -- 3.5.1 Constant-current (CC) charging -- 3.5.2 Constant-voltage (CV) charging -- 3.5.3 Constant-voltage‒constant-current (CV-CC) combinations -- 3.5.4 An additional issue when charging valve-regulated batteries -- 3.5.5 Fast charging -- 3.5.6 Effect of ripple current -- 3.6 Heat management in lead-acid batteries -- 3.6.1 Heat generation -- 3.6.2 Heat dissipation -- 3.7 Failure modes and remedies -- 3.8 Capacity -- 3.9 Self-discharge -- 3.10 Dynamic charge-acceptance -- 3.11 Summing up -- Abbreviations, acronyms and initialisms -- References -- 4 - Current research topics for lead-acid batteries -- 4.1 Design and materials -- 4.1.1 Alternative cell chemistries -- 4.1.1.1 Hybrid supercapacitor -- 4.1.1.2 UltraBatteryTM -- 4.1.2 Alternative cell design concepts -- 4.1.3 Improved materials -- 4.1.4 Physical modifications in starting-lighting-ignition batteries -- 4.2 Operating strategy -- 4.3 Battery monitoring -- 4.3.1 State-of-charge -- 4.3.2 State-of-function -- 4.3.3 State-of-health -- 4.4 Dual battery systems -- 4.5 Discussion -- References -- 2 - Battery Technology -- 5 - Flooded starting-lighting-ignition (SLI) and enhanced flooded batteries (EFBs): state-of-the-art |
Beschreibung: | xxxii, 674 Seiten Illustrationen, Diagramme |
ISBN: | 9780444637000 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044316924 | ||
003 | DE-604 | ||
005 | 20171215 | ||
007 | t | ||
008 | 170518s2017 a||| |||| 00||| eng d | ||
020 | |a 9780444637000 |9 978-0-444-63700-0 | ||
035 | |a (OCoLC)992475557 | ||
035 | |a (DE-599)BVBBV044316924 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-83 |a DE-858 | ||
084 | |a ZN 8730 |0 (DE-625)157644: |2 rvk | ||
245 | 1 | 0 | |a Lead-acid batteries for future automobiles |c edited by Jürgen Garche, Eckhard Karden, Patrick T. Moseley, David A.J. Rand |
264 | 1 | |a Amsterdam |b Elsevier |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xxxii, 674 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 1 | |a Front Cover -- Lead - Acid Batteries for FutureAutomobiles -- Lead-Acid Batteries for Future Automobiles -- Copyright -- Contents -- List of Contributors -- About the Editors -- Preface -- Abbreviations -- 1 - Overview -- 1 - Development trends for future automobiles and their demand on the battery -- 1.1 Lead-acid batteries in automobiles: still good enough? -- 1.2 Requirements in the automotive industry -- 1.2.1 Requirements cascade and V-Model -- 1.2.2 Robustness and reliability -- 1.2.3 Materials, environmental, recycling -- 1.3 Vehicle level requirements -- 1.3.1 Power-supply system functions -- 1.3.2 Drivetrain electrification functions -- 1.4 Low-volt system topology options for advanced power supply and mild powertrain hybridization -- 1.4.1 12-V single voltage single battery -- 1.4.2 12-V dual (or multi) storage devices -- 1.4.3 12-V+48-V dual voltage, dual-storage devices -- 1.4.4 12-V+high voltage hybrid traction -- 1.5 Upcoming storage system requirements -- 1.5.1 Usable versus rated capacity -- 1.5.2 Discharge power performance -- 1.5.3 Shallow-cycle-life -- service life in partial state-of-charge operation -- 1.5.4 Dynamic charge-acceptance -- 1.5.5 Battery monitoring and management -- 1.5.6 Package and ambient conditions, weight -- 1.6 Discussion -- List of abbreviations -- References -- 2 - Overview of batteries for future automobiles -- 2.1 General requirements for batteries in electric vehicles -- 2.2 Energy storage in lead-acid batteries -- 2.3 Alkaline batteries -- 2.3.1 Nickel-cadmium batteries -- 2.3.1.1 Automotive applications -- 2.3.1.2 Cell chemistry -- Discharge processes -- Thermodynamic data -- 2.3.1.3 Nickel electrode -- 2.3.1.4 Cadmium electrode -- 2.3.1.5 Open nickel-cadmium cells -- 2.3.1.6 Gas-tight nickel-cadmium cell -- 2.3.1.7 Operating behaviour and heat management -- Charging methods | |
520 | 1 | |a 2.3.2 Nickel-metal-hydride batteries (NiMH) -- 2.3.2.1 Automotive applications -- 2.3.2.2 Cell chemistry -- Discharge processes -- 2.3.2.3 Negative metal-hydride electrode -- 2.3.2.4 Operating behaviour and heat management -- 2.3.2.5 Cell design -- 2.3.3 Nickel-zinc batteries -- 2.3.3.1 Automotive applications -- 2.3.3.2 Cell chemistry -- Discharge reaction -- Charge reaction -- 2.4 High-temperature sodium batteries -- 2.4.1 Automotive applications -- 2.4.2 Sodium-nickel chloride battery (ZEBRA) -- 2.4.2.1 Cell chemistry -- Discharge reactions -- 2.4.2.2 Operating behaviour -- 2.4.3 Sodium-sulfur battery -- 2.5 Lithium-ion batteries -- 2.5.1 Automotive applications -- 2.5.1.1 Battery electric vehicles -- 2.5.1.2 Stop-start vehicles/micro-/mild-hybrid electric vehicles -- 2.5.1.3 Challenges -- Low temperature behaviour -- High-temperature behaviour -- Safety -- Costs -- 2.5.2 Cell chemistry -- 2.5.3 Negative electrode materials (discharge: anodes) -- 2.5.3.1 Graphite -- 2.5.3.2 Lithium titanate (LTO) -- 2.5.3.3 Lithium alloys -- 2.5.4 Positive electrode materials (discharge: cathodes) -- 2.5.4.1 Lithium cobalt oxide (LCO) -- 2.5.4.2 Lithium nickel oxides (LNO and NCA) -- 2.5.4.3 Solid solutions of manganese oxide Li(Ni,Mn,Co)O2 (NMC) -- 2.5.4.4 Lithium manganese spinel LiMn2O4 (LMO) -- 2.5.4.5 Lithium iron phosphate (LFP) -- 2.5.4.6 Advanced materials in development -- 2.5.5 Electrolyte -- 2.5.5.1 Organic liquid electrolytes -- 2.5.5.2 Ionic liquids -- 2.5.5.3 Solid electrolytes -- 2.5.6 Separator -- 2.5.7 Cell and battery design -- 2.5.8 Performance data, life and ageing -- 2.5.9 Cost -- 2.6 Power sources after Lithium-ion -- 2.6.1 Lithium-sulfur battery -- 2.6.2 Lithium-air battery -- 2.6.3 All-solid-state lithium batteries -- 2.6.4 Metal-air batteries -- 2.6.5 Metal-ion batteries beyond lithium -- 2.6.6 Halide battery -- 2.6.7 Redoxflow batteries | |
520 | 1 | |a 2.7 Supercapacitors -- 2.7.1 Automotive applications -- 2.7.2 Carbon technology -- 2.7.3 Hybrid systems -- 2.8 Fuel cells -- 2.8.1 Automotive applications -- 2.8.2 Cell chemistry and cell design -- References -- 3 - Lead-acid battery fundamentals -- 3.1 Principles of operation -- 3.2 Open-circuit voltage -- Positive electrode -- Negative electrode -- 3.3 Voltage during discharge and charge -- 3.4 Designs and manufacture -- 3.4.1 Pasted plates -- 3.4.2 Tubular plates -- 3.4.3 Spiral (wound) plates -- 3.4.4 Enhanced flooded batteries -- 3.4.5 Valve-regulated batteries -- 3.4.6 UltraBatteryTM -- 3.4.7 Supercapacitor hybrid -- 3.5 Charging -- 3.5.1 Constant-current (CC) charging -- 3.5.2 Constant-voltage (CV) charging -- 3.5.3 Constant-voltage‒constant-current (CV-CC) combinations -- 3.5.4 An additional issue when charging valve-regulated batteries -- 3.5.5 Fast charging -- 3.5.6 Effect of ripple current -- 3.6 Heat management in lead-acid batteries -- 3.6.1 Heat generation -- 3.6.2 Heat dissipation -- 3.7 Failure modes and remedies -- 3.8 Capacity -- 3.9 Self-discharge -- 3.10 Dynamic charge-acceptance -- 3.11 Summing up -- Abbreviations, acronyms and initialisms -- References -- 4 - Current research topics for lead-acid batteries -- 4.1 Design and materials -- 4.1.1 Alternative cell chemistries -- 4.1.1.1 Hybrid supercapacitor -- 4.1.1.2 UltraBatteryTM -- 4.1.2 Alternative cell design concepts -- 4.1.3 Improved materials -- 4.1.4 Physical modifications in starting-lighting-ignition batteries -- 4.2 Operating strategy -- 4.3 Battery monitoring -- 4.3.1 State-of-charge -- 4.3.2 State-of-function -- 4.3.3 State-of-health -- 4.4 Dual battery systems -- 4.5 Discussion -- References -- 2 - Battery Technology -- 5 - Flooded starting-lighting-ignition (SLI) and enhanced flooded batteries (EFBs): state-of-the-art | |
650 | 0 | 7 | |a Bleiakkumulator |0 (DE-588)4007096-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hybridfahrzeug |0 (DE-588)7524499-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Akkumulator |0 (DE-588)4068497-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hybridfahrzeug |0 (DE-588)7524499-8 |D s |
689 | 0 | 1 | |a Akkumulator |0 (DE-588)4068497-0 |D s |
689 | 0 | 2 | |a Bleiakkumulator |0 (DE-588)4007096-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Garche, Jürgen |e Sonstige |4 oth | |
700 | 1 | |a Karden, Eckhard |d 1967- |e Sonstige |0 (DE-588)173125344 |4 oth | |
700 | 1 | |a Moseley, Patrick T. |e Sonstige |0 (DE-588)1068635916 |4 oth | |
700 | 1 | |a Rand, D. A. J. |d 1942- |e Sonstige |0 (DE-588)172324998 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-444-63703-1 |
856 | 4 | |q image/jpeg |u http://www.ciando.com/pictures/bib/0444637036bib_t_1.jpg |y C |3 Cover | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029720476 |
Datensatz im Suchindex
_version_ | 1804177532671492096 |
---|---|
any_adam_object | |
author_GND | (DE-588)173125344 (DE-588)1068635916 (DE-588)172324998 |
building | Verbundindex |
bvnumber | BV044316924 |
classification_rvk | ZN 8730 |
ctrlnum | (OCoLC)992475557 (DE-599)BVBBV044316924 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07254nam a2200457 c 4500</leader><controlfield tag="001">BV044316924</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170518s2017 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444637000</subfield><subfield code="9">978-0-444-63700-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992475557</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044316924</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8730</subfield><subfield code="0">(DE-625)157644:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lead-acid batteries for future automobiles</subfield><subfield code="c">edited by Jürgen Garche, Eckhard Karden, Patrick T. Moseley, David A.J. Rand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxii, 674 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">Front Cover -- Lead - Acid Batteries for FutureAutomobiles -- Lead-Acid Batteries for Future Automobiles -- Copyright -- Contents -- List of Contributors -- About the Editors -- Preface -- Abbreviations -- 1 - Overview -- 1 - Development trends for future automobiles and their demand on the battery -- 1.1 Lead-acid batteries in automobiles: still good enough? -- 1.2 Requirements in the automotive industry -- 1.2.1 Requirements cascade and V-Model -- 1.2.2 Robustness and reliability -- 1.2.3 Materials, environmental, recycling -- 1.3 Vehicle level requirements -- 1.3.1 Power-supply system functions -- 1.3.2 Drivetrain electrification functions -- 1.4 Low-volt system topology options for advanced power supply and mild powertrain hybridization -- 1.4.1 12-V single voltage single battery -- 1.4.2 12-V dual (or multi) storage devices -- 1.4.3 12-V+48-V dual voltage, dual-storage devices -- 1.4.4 12-V+high voltage hybrid traction -- 1.5 Upcoming storage system requirements -- 1.5.1 Usable versus rated capacity -- 1.5.2 Discharge power performance -- 1.5.3 Shallow-cycle-life -- service life in partial state-of-charge operation -- 1.5.4 Dynamic charge-acceptance -- 1.5.5 Battery monitoring and management -- 1.5.6 Package and ambient conditions, weight -- 1.6 Discussion -- List of abbreviations -- References -- 2 - Overview of batteries for future automobiles -- 2.1 General requirements for batteries in electric vehicles -- 2.2 Energy storage in lead-acid batteries -- 2.3 Alkaline batteries -- 2.3.1 Nickel-cadmium batteries -- 2.3.1.1 Automotive applications -- 2.3.1.2 Cell chemistry -- Discharge processes -- Thermodynamic data -- 2.3.1.3 Nickel electrode -- 2.3.1.4 Cadmium electrode -- 2.3.1.5 Open nickel-cadmium cells -- 2.3.1.6 Gas-tight nickel-cadmium cell -- 2.3.1.7 Operating behaviour and heat management -- Charging methods</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">2.3.2 Nickel-metal-hydride batteries (NiMH) -- 2.3.2.1 Automotive applications -- 2.3.2.2 Cell chemistry -- Discharge processes -- 2.3.2.3 Negative metal-hydride electrode -- 2.3.2.4 Operating behaviour and heat management -- 2.3.2.5 Cell design -- 2.3.3 Nickel-zinc batteries -- 2.3.3.1 Automotive applications -- 2.3.3.2 Cell chemistry -- Discharge reaction -- Charge reaction -- 2.4 High-temperature sodium batteries -- 2.4.1 Automotive applications -- 2.4.2 Sodium-nickel chloride battery (ZEBRA) -- 2.4.2.1 Cell chemistry -- Discharge reactions -- 2.4.2.2 Operating behaviour -- 2.4.3 Sodium-sulfur battery -- 2.5 Lithium-ion batteries -- 2.5.1 Automotive applications -- 2.5.1.1 Battery electric vehicles -- 2.5.1.2 Stop-start vehicles/micro-/mild-hybrid electric vehicles -- 2.5.1.3 Challenges -- Low temperature behaviour -- High-temperature behaviour -- Safety -- Costs -- 2.5.2 Cell chemistry -- 2.5.3 Negative electrode materials (discharge: anodes) -- 2.5.3.1 Graphite -- 2.5.3.2 Lithium titanate (LTO) -- 2.5.3.3 Lithium alloys -- 2.5.4 Positive electrode materials (discharge: cathodes) -- 2.5.4.1 Lithium cobalt oxide (LCO) -- 2.5.4.2 Lithium nickel oxides (LNO and NCA) -- 2.5.4.3 Solid solutions of manganese oxide Li(Ni,Mn,Co)O2 (NMC) -- 2.5.4.4 Lithium manganese spinel LiMn2O4 (LMO) -- 2.5.4.5 Lithium iron phosphate (LFP) -- 2.5.4.6 Advanced materials in development -- 2.5.5 Electrolyte -- 2.5.5.1 Organic liquid electrolytes -- 2.5.5.2 Ionic liquids -- 2.5.5.3 Solid electrolytes -- 2.5.6 Separator -- 2.5.7 Cell and battery design -- 2.5.8 Performance data, life and ageing -- 2.5.9 Cost -- 2.6 Power sources after Lithium-ion -- 2.6.1 Lithium-sulfur battery -- 2.6.2 Lithium-air battery -- 2.6.3 All-solid-state lithium batteries -- 2.6.4 Metal-air batteries -- 2.6.5 Metal-ion batteries beyond lithium -- 2.6.6 Halide battery -- 2.6.7 Redoxflow batteries</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">2.7 Supercapacitors -- 2.7.1 Automotive applications -- 2.7.2 Carbon technology -- 2.7.3 Hybrid systems -- 2.8 Fuel cells -- 2.8.1 Automotive applications -- 2.8.2 Cell chemistry and cell design -- References -- 3 - Lead-acid battery fundamentals -- 3.1 Principles of operation -- 3.2 Open-circuit voltage -- Positive electrode -- Negative electrode -- 3.3 Voltage during discharge and charge -- 3.4 Designs and manufacture -- 3.4.1 Pasted plates -- 3.4.2 Tubular plates -- 3.4.3 Spiral (wound) plates -- 3.4.4 Enhanced flooded batteries -- 3.4.5 Valve-regulated batteries -- 3.4.6 UltraBatteryTM -- 3.4.7 Supercapacitor hybrid -- 3.5 Charging -- 3.5.1 Constant-current (CC) charging -- 3.5.2 Constant-voltage (CV) charging -- 3.5.3 Constant-voltage‒constant-current (CV-CC) combinations -- 3.5.4 An additional issue when charging valve-regulated batteries -- 3.5.5 Fast charging -- 3.5.6 Effect of ripple current -- 3.6 Heat management in lead-acid batteries -- 3.6.1 Heat generation -- 3.6.2 Heat dissipation -- 3.7 Failure modes and remedies -- 3.8 Capacity -- 3.9 Self-discharge -- 3.10 Dynamic charge-acceptance -- 3.11 Summing up -- Abbreviations, acronyms and initialisms -- References -- 4 - Current research topics for lead-acid batteries -- 4.1 Design and materials -- 4.1.1 Alternative cell chemistries -- 4.1.1.1 Hybrid supercapacitor -- 4.1.1.2 UltraBatteryTM -- 4.1.2 Alternative cell design concepts -- 4.1.3 Improved materials -- 4.1.4 Physical modifications in starting-lighting-ignition batteries -- 4.2 Operating strategy -- 4.3 Battery monitoring -- 4.3.1 State-of-charge -- 4.3.2 State-of-function -- 4.3.3 State-of-health -- 4.4 Dual battery systems -- 4.5 Discussion -- References -- 2 - Battery Technology -- 5 - Flooded starting-lighting-ignition (SLI) and enhanced flooded batteries (EFBs): state-of-the-art</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bleiakkumulator</subfield><subfield code="0">(DE-588)4007096-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hybridfahrzeug</subfield><subfield code="0">(DE-588)7524499-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Akkumulator</subfield><subfield code="0">(DE-588)4068497-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hybridfahrzeug</subfield><subfield code="0">(DE-588)7524499-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Akkumulator</subfield><subfield code="0">(DE-588)4068497-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Bleiakkumulator</subfield><subfield code="0">(DE-588)4007096-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garche, Jürgen</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karden, Eckhard</subfield><subfield code="d">1967-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)173125344</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moseley, Patrick T.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1068635916</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rand, D. A. J.</subfield><subfield code="d">1942-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)172324998</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-444-63703-1</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="q">image/jpeg</subfield><subfield code="u">http://www.ciando.com/pictures/bib/0444637036bib_t_1.jpg</subfield><subfield code="y">C</subfield><subfield code="3">Cover</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029720476</subfield></datafield></record></collection> |
id | DE-604.BV044316924 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:49:35Z |
institution | BVB |
isbn | 9780444637000 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029720476 |
oclc_num | 992475557 |
open_access_boolean | |
owner | DE-29T DE-83 DE-858 |
owner_facet | DE-29T DE-83 DE-858 |
physical | xxxii, 674 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Elsevier |
record_format | marc |
spelling | Lead-acid batteries for future automobiles edited by Jürgen Garche, Eckhard Karden, Patrick T. Moseley, David A.J. Rand Amsterdam Elsevier [2017] © 2017 xxxii, 674 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Front Cover -- Lead - Acid Batteries for FutureAutomobiles -- Lead-Acid Batteries for Future Automobiles -- Copyright -- Contents -- List of Contributors -- About the Editors -- Preface -- Abbreviations -- 1 - Overview -- 1 - Development trends for future automobiles and their demand on the battery -- 1.1 Lead-acid batteries in automobiles: still good enough? -- 1.2 Requirements in the automotive industry -- 1.2.1 Requirements cascade and V-Model -- 1.2.2 Robustness and reliability -- 1.2.3 Materials, environmental, recycling -- 1.3 Vehicle level requirements -- 1.3.1 Power-supply system functions -- 1.3.2 Drivetrain electrification functions -- 1.4 Low-volt system topology options for advanced power supply and mild powertrain hybridization -- 1.4.1 12-V single voltage single battery -- 1.4.2 12-V dual (or multi) storage devices -- 1.4.3 12-V+48-V dual voltage, dual-storage devices -- 1.4.4 12-V+high voltage hybrid traction -- 1.5 Upcoming storage system requirements -- 1.5.1 Usable versus rated capacity -- 1.5.2 Discharge power performance -- 1.5.3 Shallow-cycle-life -- service life in partial state-of-charge operation -- 1.5.4 Dynamic charge-acceptance -- 1.5.5 Battery monitoring and management -- 1.5.6 Package and ambient conditions, weight -- 1.6 Discussion -- List of abbreviations -- References -- 2 - Overview of batteries for future automobiles -- 2.1 General requirements for batteries in electric vehicles -- 2.2 Energy storage in lead-acid batteries -- 2.3 Alkaline batteries -- 2.3.1 Nickel-cadmium batteries -- 2.3.1.1 Automotive applications -- 2.3.1.2 Cell chemistry -- Discharge processes -- Thermodynamic data -- 2.3.1.3 Nickel electrode -- 2.3.1.4 Cadmium electrode -- 2.3.1.5 Open nickel-cadmium cells -- 2.3.1.6 Gas-tight nickel-cadmium cell -- 2.3.1.7 Operating behaviour and heat management -- Charging methods 2.3.2 Nickel-metal-hydride batteries (NiMH) -- 2.3.2.1 Automotive applications -- 2.3.2.2 Cell chemistry -- Discharge processes -- 2.3.2.3 Negative metal-hydride electrode -- 2.3.2.4 Operating behaviour and heat management -- 2.3.2.5 Cell design -- 2.3.3 Nickel-zinc batteries -- 2.3.3.1 Automotive applications -- 2.3.3.2 Cell chemistry -- Discharge reaction -- Charge reaction -- 2.4 High-temperature sodium batteries -- 2.4.1 Automotive applications -- 2.4.2 Sodium-nickel chloride battery (ZEBRA) -- 2.4.2.1 Cell chemistry -- Discharge reactions -- 2.4.2.2 Operating behaviour -- 2.4.3 Sodium-sulfur battery -- 2.5 Lithium-ion batteries -- 2.5.1 Automotive applications -- 2.5.1.1 Battery electric vehicles -- 2.5.1.2 Stop-start vehicles/micro-/mild-hybrid electric vehicles -- 2.5.1.3 Challenges -- Low temperature behaviour -- High-temperature behaviour -- Safety -- Costs -- 2.5.2 Cell chemistry -- 2.5.3 Negative electrode materials (discharge: anodes) -- 2.5.3.1 Graphite -- 2.5.3.2 Lithium titanate (LTO) -- 2.5.3.3 Lithium alloys -- 2.5.4 Positive electrode materials (discharge: cathodes) -- 2.5.4.1 Lithium cobalt oxide (LCO) -- 2.5.4.2 Lithium nickel oxides (LNO and NCA) -- 2.5.4.3 Solid solutions of manganese oxide Li(Ni,Mn,Co)O2 (NMC) -- 2.5.4.4 Lithium manganese spinel LiMn2O4 (LMO) -- 2.5.4.5 Lithium iron phosphate (LFP) -- 2.5.4.6 Advanced materials in development -- 2.5.5 Electrolyte -- 2.5.5.1 Organic liquid electrolytes -- 2.5.5.2 Ionic liquids -- 2.5.5.3 Solid electrolytes -- 2.5.6 Separator -- 2.5.7 Cell and battery design -- 2.5.8 Performance data, life and ageing -- 2.5.9 Cost -- 2.6 Power sources after Lithium-ion -- 2.6.1 Lithium-sulfur battery -- 2.6.2 Lithium-air battery -- 2.6.3 All-solid-state lithium batteries -- 2.6.4 Metal-air batteries -- 2.6.5 Metal-ion batteries beyond lithium -- 2.6.6 Halide battery -- 2.6.7 Redoxflow batteries 2.7 Supercapacitors -- 2.7.1 Automotive applications -- 2.7.2 Carbon technology -- 2.7.3 Hybrid systems -- 2.8 Fuel cells -- 2.8.1 Automotive applications -- 2.8.2 Cell chemistry and cell design -- References -- 3 - Lead-acid battery fundamentals -- 3.1 Principles of operation -- 3.2 Open-circuit voltage -- Positive electrode -- Negative electrode -- 3.3 Voltage during discharge and charge -- 3.4 Designs and manufacture -- 3.4.1 Pasted plates -- 3.4.2 Tubular plates -- 3.4.3 Spiral (wound) plates -- 3.4.4 Enhanced flooded batteries -- 3.4.5 Valve-regulated batteries -- 3.4.6 UltraBatteryTM -- 3.4.7 Supercapacitor hybrid -- 3.5 Charging -- 3.5.1 Constant-current (CC) charging -- 3.5.2 Constant-voltage (CV) charging -- 3.5.3 Constant-voltage‒constant-current (CV-CC) combinations -- 3.5.4 An additional issue when charging valve-regulated batteries -- 3.5.5 Fast charging -- 3.5.6 Effect of ripple current -- 3.6 Heat management in lead-acid batteries -- 3.6.1 Heat generation -- 3.6.2 Heat dissipation -- 3.7 Failure modes and remedies -- 3.8 Capacity -- 3.9 Self-discharge -- 3.10 Dynamic charge-acceptance -- 3.11 Summing up -- Abbreviations, acronyms and initialisms -- References -- 4 - Current research topics for lead-acid batteries -- 4.1 Design and materials -- 4.1.1 Alternative cell chemistries -- 4.1.1.1 Hybrid supercapacitor -- 4.1.1.2 UltraBatteryTM -- 4.1.2 Alternative cell design concepts -- 4.1.3 Improved materials -- 4.1.4 Physical modifications in starting-lighting-ignition batteries -- 4.2 Operating strategy -- 4.3 Battery monitoring -- 4.3.1 State-of-charge -- 4.3.2 State-of-function -- 4.3.3 State-of-health -- 4.4 Dual battery systems -- 4.5 Discussion -- References -- 2 - Battery Technology -- 5 - Flooded starting-lighting-ignition (SLI) and enhanced flooded batteries (EFBs): state-of-the-art Bleiakkumulator (DE-588)4007096-7 gnd rswk-swf Hybridfahrzeug (DE-588)7524499-8 gnd rswk-swf Akkumulator (DE-588)4068497-0 gnd rswk-swf Hybridfahrzeug (DE-588)7524499-8 s Akkumulator (DE-588)4068497-0 s Bleiakkumulator (DE-588)4007096-7 s DE-604 Garche, Jürgen Sonstige oth Karden, Eckhard 1967- Sonstige (DE-588)173125344 oth Moseley, Patrick T. Sonstige (DE-588)1068635916 oth Rand, D. A. J. 1942- Sonstige (DE-588)172324998 oth Erscheint auch als Online-Ausgabe 978-0-444-63703-1 image/jpeg http://www.ciando.com/pictures/bib/0444637036bib_t_1.jpg C Cover |
spellingShingle | Lead-acid batteries for future automobiles Bleiakkumulator (DE-588)4007096-7 gnd Hybridfahrzeug (DE-588)7524499-8 gnd Akkumulator (DE-588)4068497-0 gnd |
subject_GND | (DE-588)4007096-7 (DE-588)7524499-8 (DE-588)4068497-0 |
title | Lead-acid batteries for future automobiles |
title_auth | Lead-acid batteries for future automobiles |
title_exact_search | Lead-acid batteries for future automobiles |
title_full | Lead-acid batteries for future automobiles edited by Jürgen Garche, Eckhard Karden, Patrick T. Moseley, David A.J. Rand |
title_fullStr | Lead-acid batteries for future automobiles edited by Jürgen Garche, Eckhard Karden, Patrick T. Moseley, David A.J. Rand |
title_full_unstemmed | Lead-acid batteries for future automobiles edited by Jürgen Garche, Eckhard Karden, Patrick T. Moseley, David A.J. Rand |
title_short | Lead-acid batteries for future automobiles |
title_sort | lead acid batteries for future automobiles |
topic | Bleiakkumulator (DE-588)4007096-7 gnd Hybridfahrzeug (DE-588)7524499-8 gnd Akkumulator (DE-588)4068497-0 gnd |
topic_facet | Bleiakkumulator Hybridfahrzeug Akkumulator |
url | http://www.ciando.com/pictures/bib/0444637036bib_t_1.jpg |
work_keys_str_mv | AT garchejurgen leadacidbatteriesforfutureautomobiles AT kardeneckhard leadacidbatteriesforfutureautomobiles AT moseleypatrickt leadacidbatteriesforfutureautomobiles AT randdaj leadacidbatteriesforfutureautomobiles |