Descriptive set theory and forcing: how to prove theorems about Borel sets the hard way
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | Lecture notes in logic
4 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis |
Beschreibung: | Title from publisher's bibliographic system (viewed on 18 Apr 2017) |
Beschreibung: | 1 online resource (129 pages) |
ISBN: | 9781316716977 |
DOI: | 10.1017/9781316716977 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044311988 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170516s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316716977 |9 978-1-316-71697-7 | ||
024 | 7 | |a 10.1017/9781316716977 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316716977 | ||
035 | |a (OCoLC)992477543 | ||
035 | |a (DE-599)BVBBV044311988 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511.3/22 | |
100 | 1 | |a Miller, Arnold W. |d 1950- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Descriptive set theory and forcing |b how to prove theorems about Borel sets the hard way |c Arnold W. Miller |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (129 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture notes in logic |v 4 | |
500 | |a Title from publisher's bibliographic system (viewed on 18 Apr 2017) | ||
520 | |a Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis | ||
650 | 4 | |a Set theory | |
650 | 4 | |a Forcing (Model theory) | |
650 | 4 | |a Borel sets | |
650 | 0 | 7 | |a Borel-Menge |0 (DE-588)4146323-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Borel-Menge |0 (DE-588)4146323-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 978-1-107-16806-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316716977 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029715622 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/9781316716977 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316716977 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177524332167168 |
---|---|
any_adam_object | |
author | Miller, Arnold W. 1950- |
author_facet | Miller, Arnold W. 1950- |
author_role | aut |
author_sort | Miller, Arnold W. 1950- |
author_variant | a w m aw awm |
building | Verbundindex |
bvnumber | BV044311988 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316716977 (OCoLC)992477543 (DE-599)BVBBV044311988 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781316716977 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02563nmm a2200469zcb4500</leader><controlfield tag="001">BV044311988</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170516s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316716977</subfield><subfield code="9">978-1-316-71697-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316716977</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316716977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992477543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044311988</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, Arnold W.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Descriptive set theory and forcing</subfield><subfield code="b">how to prove theorems about Borel sets the hard way</subfield><subfield code="c">Arnold W. Miller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (129 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture notes in logic</subfield><subfield code="v">4</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 18 Apr 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forcing (Model theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Borel sets</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Borel-Menge</subfield><subfield code="0">(DE-588)4146323-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Borel-Menge</subfield><subfield code="0">(DE-588)4146323-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">978-1-107-16806-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316716977</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029715622</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316716977</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316716977</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044311988 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:49:27Z |
institution | BVB |
isbn | 9781316716977 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029715622 |
oclc_num | 992477543 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (129 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Lecture notes in logic |
spelling | Miller, Arnold W. 1950- Verfasser aut Descriptive set theory and forcing how to prove theorems about Borel sets the hard way Arnold W. Miller Cambridge Cambridge University Press 2016 1 online resource (129 pages) txt rdacontent c rdamedia cr rdacarrier Lecture notes in logic 4 Title from publisher's bibliographic system (viewed on 18 Apr 2017) Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis Set theory Forcing (Model theory) Borel sets Borel-Menge (DE-588)4146323-7 gnd rswk-swf Borel-Menge (DE-588)4146323-7 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, hardback 978-1-107-16806-0 https://doi.org/10.1017/9781316716977 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Miller, Arnold W. 1950- Descriptive set theory and forcing how to prove theorems about Borel sets the hard way Set theory Forcing (Model theory) Borel sets Borel-Menge (DE-588)4146323-7 gnd |
subject_GND | (DE-588)4146323-7 |
title | Descriptive set theory and forcing how to prove theorems about Borel sets the hard way |
title_auth | Descriptive set theory and forcing how to prove theorems about Borel sets the hard way |
title_exact_search | Descriptive set theory and forcing how to prove theorems about Borel sets the hard way |
title_full | Descriptive set theory and forcing how to prove theorems about Borel sets the hard way Arnold W. Miller |
title_fullStr | Descriptive set theory and forcing how to prove theorems about Borel sets the hard way Arnold W. Miller |
title_full_unstemmed | Descriptive set theory and forcing how to prove theorems about Borel sets the hard way Arnold W. Miller |
title_short | Descriptive set theory and forcing |
title_sort | descriptive set theory and forcing how to prove theorems about borel sets the hard way |
title_sub | how to prove theorems about Borel sets the hard way |
topic | Set theory Forcing (Model theory) Borel sets Borel-Menge (DE-588)4146323-7 gnd |
topic_facet | Set theory Forcing (Model theory) Borel sets Borel-Menge |
url | https://doi.org/10.1017/9781316716977 |
work_keys_str_mv | AT millerarnoldw descriptivesettheoryandforcinghowtoprovetheoremsaboutborelsetsthehardway |