Admissible sets and structures: an approach to definability theory
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Admissible set theory is a major source of interaction...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | Perspectives in logic
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 Volltext |
Zusammenfassung: | Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Admissible set theory is a major source of interaction between model theory, recursion theory and set theory, and plays an important role in definability theory. In this volume, the seventh publication in the Perspectives in Logic series, Jon Barwise presents the basic facts about admissible sets and admissible ordinals in a way that makes them accessible to logic students and specialists alike. It fills the artificial gap between model theory and recursion theory and covers everything the logician should know about admissible sets |
Beschreibung: | Title from publisher's bibliographic system (viewed on 18 Apr 2017) |
Beschreibung: | 1 online resource (xiii, 394 pages) |
ISBN: | 9781316717196 |
DOI: | 10.1017/9781316717196 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044311966 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 170516s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316717196 |9 978-1-316-71719-6 | ||
024 | 7 | |a 10.1017/9781316717196 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316717196 | ||
035 | |a (OCoLC)992533458 | ||
035 | |a (DE-599)BVBBV044311966 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511/.3 | |
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
100 | 1 | |a Barwise, Jon |e Verfasser |4 aut | |
245 | 1 | 0 | |a Admissible sets and structures |b an approach to definability theory |c Jon Barwise |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xiii, 394 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Perspectives in logic | |
500 | |a Title from publisher's bibliographic system (viewed on 18 Apr 2017) | ||
520 | |a Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Admissible set theory is a major source of interaction between model theory, recursion theory and set theory, and plays an important role in definability theory. In this volume, the seventh publication in the Perspectives in Logic series, Jon Barwise presents the basic facts about admissible sets and admissible ordinals in a way that makes them accessible to logic students and specialists alike. It fills the artificial gap between model theory and recursion theory and covers everything the logician should know about admissible sets | ||
650 | 4 | |a Admissible sets | |
650 | 4 | |a Definability theory (Mathematical logic) | |
650 | 0 | 7 | |a Axiomatik |0 (DE-588)4004038-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Definierbarkeit |0 (DE-588)4284514-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | 1 | |a Definierbarkeit |0 (DE-588)4284514-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Axiomatik |0 (DE-588)4004038-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 978-1-107-16833-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316717196 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029715600 | |
966 | e | |u https://doi.org/10.1017/9781316717196 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316717196 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1814896394988683264 |
---|---|
adam_text | |
any_adam_object | |
author | Barwise, Jon |
author_facet | Barwise, Jon |
author_role | aut |
author_sort | Barwise, Jon |
author_variant | j b jb |
building | Verbundindex |
bvnumber | BV044311966 |
classification_rvk | SK 150 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316717196 (OCoLC)992533458 (DE-599)BVBBV044311966 |
dewey-full | 511/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.3 |
dewey-search | 511/.3 |
dewey-sort | 3511 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781316717196 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV044311966</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170516s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316717196</subfield><subfield code="9">978-1-316-71719-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316717196</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316717196</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992533458</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044311966</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barwise, Jon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Admissible sets and structures</subfield><subfield code="b">an approach to definability theory</subfield><subfield code="c">Jon Barwise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 394 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Perspectives in logic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 18 Apr 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Admissible set theory is a major source of interaction between model theory, recursion theory and set theory, and plays an important role in definability theory. In this volume, the seventh publication in the Perspectives in Logic series, Jon Barwise presents the basic facts about admissible sets and admissible ordinals in a way that makes them accessible to logic students and specialists alike. It fills the artificial gap between model theory and recursion theory and covers everything the logician should know about admissible sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Admissible sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Definability theory (Mathematical logic)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axiomatik</subfield><subfield code="0">(DE-588)4004038-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Definierbarkeit</subfield><subfield code="0">(DE-588)4284514-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Definierbarkeit</subfield><subfield code="0">(DE-588)4284514-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Axiomatik</subfield><subfield code="0">(DE-588)4004038-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">978-1-107-16833-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316717196</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029715600</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316717196</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316717196</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044311966 |
illustrated | Not Illustrated |
indexdate | 2024-11-05T15:21:18Z |
institution | BVB |
isbn | 9781316717196 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029715600 |
oclc_num | 992533458 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 394 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Perspectives in logic |
spelling | Barwise, Jon Verfasser aut Admissible sets and structures an approach to definability theory Jon Barwise Cambridge Cambridge University Press 2016 1 online resource (xiii, 394 pages) txt rdacontent c rdamedia cr rdacarrier Perspectives in logic Title from publisher's bibliographic system (viewed on 18 Apr 2017) Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Admissible set theory is a major source of interaction between model theory, recursion theory and set theory, and plays an important role in definability theory. In this volume, the seventh publication in the Perspectives in Logic series, Jon Barwise presents the basic facts about admissible sets and admissible ordinals in a way that makes them accessible to logic students and specialists alike. It fills the artificial gap between model theory and recursion theory and covers everything the logician should know about admissible sets Admissible sets Definability theory (Mathematical logic) Axiomatik (DE-588)4004038-0 gnd rswk-swf Definierbarkeit (DE-588)4284514-2 gnd rswk-swf Mengenlehre (DE-588)4074715-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 s Definierbarkeit (DE-588)4284514-2 s 1\p DE-604 Axiomatik (DE-588)4004038-0 s 2\p DE-604 Erscheint auch als Druck-Ausgabe, hardback 978-1-107-16833-6 https://doi.org/10.1017/9781316717196 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Barwise, Jon Admissible sets and structures an approach to definability theory Admissible sets Definability theory (Mathematical logic) Axiomatik (DE-588)4004038-0 gnd Definierbarkeit (DE-588)4284514-2 gnd Mengenlehre (DE-588)4074715-3 gnd |
subject_GND | (DE-588)4004038-0 (DE-588)4284514-2 (DE-588)4074715-3 |
title | Admissible sets and structures an approach to definability theory |
title_auth | Admissible sets and structures an approach to definability theory |
title_exact_search | Admissible sets and structures an approach to definability theory |
title_full | Admissible sets and structures an approach to definability theory Jon Barwise |
title_fullStr | Admissible sets and structures an approach to definability theory Jon Barwise |
title_full_unstemmed | Admissible sets and structures an approach to definability theory Jon Barwise |
title_short | Admissible sets and structures |
title_sort | admissible sets and structures an approach to definability theory |
title_sub | an approach to definability theory |
topic | Admissible sets Definability theory (Mathematical logic) Axiomatik (DE-588)4004038-0 gnd Definierbarkeit (DE-588)4284514-2 gnd Mengenlehre (DE-588)4074715-3 gnd |
topic_facet | Admissible sets Definability theory (Mathematical logic) Axiomatik Definierbarkeit Mengenlehre |
url | https://doi.org/10.1017/9781316717196 |
work_keys_str_mv | AT barwisejon admissiblesetsandstructuresanapproachtodefinabilitytheory |