Logicism renewed: logical foundations for mathematics and computer science
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Logicism, as put forward by Bertrand Russell, was pred...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | Lecture notes in logic
23 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Logicism, as put forward by Bertrand Russell, was predicated on a belief that all of mathematics can be deduced from a very small number of fundamental logical principles. In this volume, the twenty-third publication in the Lecture Notes in Logic series, Paul C. Gilmore revisits logicism in light of recent advances in mathematical logic and theoretical computer science. Gilmore addresses the need for languages which can be understood by both humans and computers and, using Intensional Type Theory (ITT), provides a unified basis for mathematics and computer science. This yields much simpler foundations for recursion theory and the semantics of computer programs than those currently provided by category theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 14 Apr 2017) |
Beschreibung: | 1 online resource (xvii, 260 pages) |
ISBN: | 9781316755808 |
DOI: | 10.1017/9781316755808 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044283907 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170425s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316755808 |9 978-1-316-75580-8 | ||
024 | 7 | |a 10.1017/9781316755808 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316755808 | ||
035 | |a (OCoLC)992471200 | ||
035 | |a (DE-599)BVBBV044283907 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511.3 | |
100 | 1 | |a Gilmore, Paul C. (Paul Carl) |d 1925- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Logicism renewed |b logical foundations for mathematics and computer science |c Paul C. Gilmore |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xvii, 260 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture notes in logic |v 23 | |
500 | |a Title from publisher's bibliographic system (viewed on 14 Apr 2017) | ||
520 | |a Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Logicism, as put forward by Bertrand Russell, was predicated on a belief that all of mathematics can be deduced from a very small number of fundamental logical principles. In this volume, the twenty-third publication in the Lecture Notes in Logic series, Paul C. Gilmore revisits logicism in light of recent advances in mathematical logic and theoretical computer science. Gilmore addresses the need for languages which can be understood by both humans and computers and, using Intensional Type Theory (ITT), provides a unified basis for mathematics and computer science. This yields much simpler foundations for recursion theory and the semantics of computer programs than those currently provided by category theory | ||
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316755808 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029688209 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/9781316755808 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316755808 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177476544364544 |
---|---|
any_adam_object | |
author | Gilmore, Paul C. (Paul Carl) 1925- |
author_facet | Gilmore, Paul C. (Paul Carl) 1925- |
author_role | aut |
author_sort | Gilmore, Paul C. (Paul Carl) 1925- |
author_variant | p c p c g pcpc pcpcg |
building | Verbundindex |
bvnumber | BV044283907 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316755808 (OCoLC)992471200 (DE-599)BVBBV044283907 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781316755808 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02658nmm a2200433zcb4500</leader><controlfield tag="001">BV044283907</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170425s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316755808</subfield><subfield code="9">978-1-316-75580-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316755808</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316755808</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992471200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044283907</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilmore, Paul C. (Paul Carl)</subfield><subfield code="d">1925-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Logicism renewed</subfield><subfield code="b">logical foundations for mathematics and computer science</subfield><subfield code="c">Paul C. Gilmore</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 260 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture notes in logic</subfield><subfield code="v">23</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 14 Apr 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Logicism, as put forward by Bertrand Russell, was predicated on a belief that all of mathematics can be deduced from a very small number of fundamental logical principles. In this volume, the twenty-third publication in the Lecture Notes in Logic series, Paul C. Gilmore revisits logicism in light of recent advances in mathematical logic and theoretical computer science. Gilmore addresses the need for languages which can be understood by both humans and computers and, using Intensional Type Theory (ITT), provides a unified basis for mathematics and computer science. This yields much simpler foundations for recursion theory and the semantics of computer programs than those currently provided by category theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316755808</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029688209</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316755808</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316755808</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044283907 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:48:41Z |
institution | BVB |
isbn | 9781316755808 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029688209 |
oclc_num | 992471200 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 260 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Lecture notes in logic |
spelling | Gilmore, Paul C. (Paul Carl) 1925- Verfasser aut Logicism renewed logical foundations for mathematics and computer science Paul C. Gilmore Cambridge Cambridge University Press 2016 1 online resource (xvii, 260 pages) txt rdacontent c rdamedia cr rdacarrier Lecture notes in logic 23 Title from publisher's bibliographic system (viewed on 14 Apr 2017) Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Logicism, as put forward by Bertrand Russell, was predicated on a belief that all of mathematics can be deduced from a very small number of fundamental logical principles. In this volume, the twenty-third publication in the Lecture Notes in Logic series, Paul C. Gilmore revisits logicism in light of recent advances in mathematical logic and theoretical computer science. Gilmore addresses the need for languages which can be understood by both humans and computers and, using Intensional Type Theory (ITT), provides a unified basis for mathematics and computer science. This yields much simpler foundations for recursion theory and the semantics of computer programs than those currently provided by category theory Logic, Symbolic and mathematical Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 s 1\p DE-604 https://doi.org/10.1017/9781316755808 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gilmore, Paul C. (Paul Carl) 1925- Logicism renewed logical foundations for mathematics and computer science Logic, Symbolic and mathematical Mathematische Logik (DE-588)4037951-6 gnd |
subject_GND | (DE-588)4037951-6 |
title | Logicism renewed logical foundations for mathematics and computer science |
title_auth | Logicism renewed logical foundations for mathematics and computer science |
title_exact_search | Logicism renewed logical foundations for mathematics and computer science |
title_full | Logicism renewed logical foundations for mathematics and computer science Paul C. Gilmore |
title_fullStr | Logicism renewed logical foundations for mathematics and computer science Paul C. Gilmore |
title_full_unstemmed | Logicism renewed logical foundations for mathematics and computer science Paul C. Gilmore |
title_short | Logicism renewed |
title_sort | logicism renewed logical foundations for mathematics and computer science |
title_sub | logical foundations for mathematics and computer science |
topic | Logic, Symbolic and mathematical Mathematische Logik (DE-588)4037951-6 gnd |
topic_facet | Logic, Symbolic and mathematical Mathematische Logik |
url | https://doi.org/10.1017/9781316755808 |
work_keys_str_mv | AT gilmorepaulcpaulcarl logicismrenewedlogicalfoundationsformathematicsandcomputerscience |