Polymer processing: principles and modeling
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Munich ; Cincinnati
Hanser
[2017]
|
Ausgabe: | 2nd edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XLI, 841 Seiten Illustrationen, Diagramme |
ISBN: | 9781569906057 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044272384 | ||
003 | DE-604 | ||
005 | 20170926 | ||
007 | t | ||
008 | 170413s2017 a||| |||| 00||| eng d | ||
020 | |a 9781569906057 |9 978-1-56990-605-7 | ||
035 | |a (OCoLC)989734830 | ||
035 | |a (DE-599)BVBBV044272384 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-19 |a DE-1050 |a DE-1102 |a DE-210 |a DE-703 |a DE-29T |a DE-83 | ||
084 | |a UV 9000 |0 (DE-625)146918: |2 rvk | ||
084 | |a ZM 5250 |0 (DE-625)157063: |2 rvk | ||
245 | 1 | 0 | |a Polymer processing |b principles and modeling |c Jean-François Agassant, Pierre Avenas, Pierre J. Carreau, Bruno Vergnes, Michel Vincent |
250 | |a 2nd edition | ||
264 | 1 | |a Munich ; Cincinnati |b Hanser |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a XLI, 841 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Verarbeitung |0 (DE-588)4537851-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kunststoffverarbeitung |0 (DE-588)4114335-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polymere |0 (DE-588)4046699-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kunststofftechnik |0 (DE-588)4166076-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kunststoffverarbeitung |0 (DE-588)4114335-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Polymere |0 (DE-588)4046699-1 |D s |
689 | 1 | 1 | |a Verarbeitung |0 (DE-588)4537851-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Kunststofftechnik |0 (DE-588)4166076-6 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
700 | 1 | |a Agassant, Jean-François |0 (DE-588)112277837 |4 ctb | |
700 | 1 | |a Avenas, Pierre |4 ctb | |
700 | 1 | |a Carreau, Pierre J. |4 ctb | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-56990-606-4 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029676960&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029676960 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177457024073728 |
---|---|
adam_text | FOREWORD TO THE ENGLISH EDITION XXVII
PREFACE TO THE THIRD FRENCH
EDITION....................................................................XXIX
ACKNOWLEDGEMENTS..............................................................................................
XXXI
INTRODUCTION.........................................................................................................
XXXV
1 CONTINUUM MECHANICS: REVIEW OF
PRINCIPLES..................................................1
1.1 STRAIN AND RATE-OF-STRAIN
TENSOR.......................................................................1
1.1.1 STRAIN
TENSOR..........................................................................................
1
1.1.1.1 PHENOMENOLOGICAL DEFINITIONS
.............................................
1
1.1.1.1.1 EXTENSION (OR
COMPRESSION).................................................1
1.1.1.1.2 PURE
SHEAR............................................................................2
1.1.1.2 DISPLACEMENT GRADIENT
........................................................
2
1.1.1.3 DEFORMATION OR STRAIN TENSOR E
...........................................4
1.1.1.4 VOLUME VARIATION DURING DEFORMATION
...............................
5
1.1.2 RATE-OF-STRAIN
TENSOR............................................................................
6
1.1.3 CONTINUITY
EQUATION..............................................................................
7
1.1.3.1 MASS
BALANCE........................................................................7
1.1.3.2 INCOMPRESSIBLE MATERIALS
....................................................
8
1.1.4 PROBLEM
S................................................................................................8
1.1.4.1 ANALYSIS OF SIMPLE SHEAR FLOW
...........................................8
1.1.4.2 STUDY OF SEVERAL SIMPLE SHEAR FLOWS
.................................
9
1.1.4.2.1 FLOW BETWEEN PARALLEL PLATES (FIGURE 1 .6 )
.........................
9
1.1.4.2.2 FLOW IN A CIRCULAR TUBE (FIGURE 1.7)
..................................
10
1.1.4.2.3 FLOW BETWEEN TWO PARALLEL D ISKS
....................
10
1.1.4.2.4 FLOW BETWEEN A CONE AND A P LATE
......................................
11
1.1.4.2.5 COUETTE FLOW............................................ 12
1.1.4.3 PURE ELONGATIONAL FLOW
...................................
12
1.1.4.3.1 SIMPLE ELONGATION
..............................................................
12
1.1.4.3.2 BIAXIAL STRETCHING: BUBBLE INFLATION
...................................
13
1.2 STRESSES AND FORCE BALANCES
...........................................................................
14
1.2.1 STRESS TENSOR
........................................................................................
14
1.2.1.1 PHENOMENOLOGICAL
DEFINITIONS.............................................14
1.2.1.1.1 EXTENSION (OR COMPRESSION) (FIGURE
1.13)...........................14
1.2.1.1.2 SIMPLE SHEAR (FIGURE 1.14)
................................................
15
1.2.1.2 STRESS
VECTOR........................................................................
15
1.2.1.3 STRESS
TENSOR........................................................................16
1.2.1.4 ISOTROPIC STRESS OR HYDROSTATIC P RESSU RE
...........................
17
1.2.1.5 DEVIATORIC STRESS TENSOR
......................................................
17
1.2.2 EQUATION OF MOTION
.......................................
18
1.2.2.1 FORCE
BALANCES......................................................................
18
1.2.2.2 TORQUE
BALANCES.................................................................20
1.2.3 PROBLEM
S..............................................................................................
21
1.2.3.1 SHEAR STRESS AT THE SURFACE OF A
TUBE................................21
1.2.3.2 STRESSES IN A
SHELL............................................................... 21
1.3 GENERAL EQUATIONS OF
MECHANICS.....................................................................
22
1.3.1 GENERAL
CASE........................................................................................
22
1.3.2 INCOMPRESSIBILITY
................................................................................
23
1.3.3 PLANAR
FLOW..........................................................................................
23
1.3.4 PROBLEM: STRESS TENSOR IN SIMPLE SHEAR
FLOW....................................24
1.4 APPENDICES................................. 25
1.4.1 APPENDIX 1: BASIC
FORMULAE...............................................................
25
1.4.1.1 CYLINDRICAL COORDINATES
......................................................
25
1.4.1.2 SPHERICAL COORDINATES
..........................................................
27
1.4.2 APPENDIX 2: INVARIANTS OF A TENSOR
.....................................................
28
1.4.2.1
DEFINITIONS............................................................................28
1.4.2.2 INVARIANTS USED IN FLUID
MECHANICS..................................29
REFERENCES..................................................................................................................31
2 RHEOLOGICAL BEHAVIOR OF MOLTEN POLYMERS
..........
........................................
33
2.1 VISCOSITY: EQUATIONS FOR NEWTONIAN FLUIDS
....................................
33
2.1.1 BASIC EXPERIMENT OF NEWTONIAN BEHAVIOR
...............
33
2.1.1.1 PHENOMENOLOGICAL DEFINITION OF NEWTON (1713)
...............
33
2.1.1.2 EXPERIMENT OF TROUTON: CONCEPT OF ELONGATIONAL
VISCOSITY
..............................................................................
34
2.1.2 GENERALIZATION TO THREE DIMENSIONS
...................................................
35
2.1.2.1 CONSTITUTIVE EQUATION
.............
.
......................
35
2.1.2.2 SIMPLE SHEAR FLOW
...........................................
35
2.1.2.3 UNIAXIAL EXTENSIONS FLOW
..................................................
36
2.1.3 MAGNITUDES OF THE FORCES INVOLVED.................................
36
2.1.3.1 UNITS OF VISCOSITY AND ORDERS OF MAGNITUDE
.....................
36
2.1.3.2 REYNOLDS
NUMBER................................................................37
2.1.3.3 EFFECT OF GRAVITY
.................
38
2.1.4 NAVIER-STOKES
EQUATIONS.......................................................................38
2.1.5 PROBLEM
S..............................................................................................39
2.1.5.1 SIMPLE SHEAR FLOW
.........................................
39
2.1.5.2 PLANAR PRESSURE
FLOW..........................................................40
2.1.5.3 SUPERPOSITION OF A SIMPLE SHEAR FLOW AND A PLANAR
PRESSURE FLOW
..................................
41
2.1.5.4 PRESSURE FLOW IN A TUBE.........
.
...........................................43
2.1.5.5 SIMPLE SHEAR BETWEEN TWO PARALLEL
DISKS.........................44
2.1.5.6 COUETTE FLOW............................................. 44
2.1.5.7 FLOW IN A
DIHEDRON.............................................................46
2.1.5.8 FLOW IN A
CONE.....................................................................
47
2.2 SHEAR-THINNING BEHAVIOR
.......................
.........
.
............................................
48
2.2.1 PHENOMENOLOGICAL DESCRIPTION
.
.
..............
48
2.2.2 RHEOLOGICAL MODELS IN ONE DIMENSION
...............................................
48
2.2.2.1 POWER-LAW M ODEL......................................... 49
2.2.2.2 CROSS MODEL
........
.
.............................................................. 50
2.2.2.3 CARREAU
MODEL....................................................................
50
2.2.3 PHYSICAL EXPLANATION OF THE SHEAR-THINNING BEHAVIOR OF POLYMERS.
.50
2.2.4 THREE-DIMENSIONAL CONSTITUTIVE
EQUATIONS........................................52
2.2.5 APPLICATIONS OF THE POWER LAW TO SIMPLE FLOWS
..................
53
2.2.5.1 SIMPLE SHEAR FLOW
.............................................................
53
2.2.5.2 PRESSURE FLOW IN A TUBE
.................
53
2.2.6 PROBLEMS IN POWER-LAW FLUIDS
...................................................
55
2.2.6.1 SIMPLE SHEAR FLOW BETWEEN PARALLEL PLATES
........................
55
2.2. OE.2 PRESSURE FLOW IN A
TUBE......................................................56
2.2. OE.3 PLANAR PRESSURE FLOW
.........................................................
57
2.2. OE.4 SUPERPOSITION OF A SIMPLE SHEAR FLOW AND A PLANAR
PRESSURE FLOW
....................................................................
58
2.2. OE.5 SIMPLE SHEAR FLOW BETWEEN D ISK S.........
...........................
59
2.2.6.6 COUETTE FLOW
.............................
60
2.3 BEHAVIOR OF FILLED
POLYMERS..........................................................
.................
60
2.3.1 RHEOLOGICAL BEHAVIOR OF SUSPENSIONS
.
..............
61
2.3.1.1 DILUTE SUSPENSIONS OF
SPHERES..........................................61
2.3.1.2 CONCENTRATED SUSPENSIONS OF SPHERES
..............................
62
2.3.1.3 SPECIAL CASE OF FIBERS.
........
...............................................63
2.3.1.3.1 ORIENTATION................................................ 63
2.3.1.3.2 RHEOLOGICAL
BEHAVIOR.........................................................67
2.3.2 YIELD STRESS F LUIDS
......
..........
68
2.3.3 PROBLEM: PRESSURE FLOW OF A YIELD STRESS FLUID IN A PIPE
.................
71
2.4 VISCOELASTIC
BEHAVIOR......................................................................................72
2.4.1 PHYSICAL
PHENOMENA.............................................................................72
2.4.1.1 EXTRUDATE
SWELL..................................................................72
2.4.1.2 WEISSENBERG
EFFECT............................................................. 73
2.4.1.3 TIME-DEPENDENT BEHAVIOR
................................................
73
2.4.1.3.1 STRESS RETARDATION AND
RELAXATION...................................74
2.4.1.3.2 RECOVERY OF DEFORMATION AFTER CESSATION OF STRESS
.........
74
2.4.1.3.3 RESPONSE OF A POLYMER TO A SINUSOIDAL M OTION
................
75
2.4.2 LINEAR VISCOELASTICITY AND THE MAXWELL M
ODEL..................................75
2.4.2.1 GENERAL INFORMATION ON LINEAR VISCOELASTIC MODELS
.......
75
2.4.2.2 BEHAVIOR OF A MAXWELL
ELEMENT.........................................77
2.4.2.3 QUALITATIVE INTERPRETATION OF TIME-DEPENDENT
PHENOMENA
................................................
78
2.4.2.3.1 STRESS RELAXATION (FIGURE
2.30)..........................................78
2A2.3.2 STRESS RETARDATION (FIGURE
2.31).......................................78
2A2.3.3 STRAIN
RECOVERY..................................................................
78
2A2.3.4 RESPONSE TO A PERIODIC S TRA IN
...........................................79
2.4.3 NORMAL STRESS DIFFERENCE IN SIMPLE
SHEAR..........................................81
2.4.4 EXTRUDATE
SWELL....................................................................................
83
2.4.5 CONVECTED MAXWELL
MODEL...................................................................85
2.4.5.1 TRANSIENT
BEHAVIOR............................................................ 86
2A5.2 VISCOMETRIC FUNCTIONS
...................................................
.86
2A5.3 ELONGATIONAL VISCOSITY
......................................................
87
2.4.6 VISCOELASTIC DIMENSIONLESS NUMBERS
.................................................
88
2.4.7 PHYSICAL INTERPRETATION OF THE VISCOELASTIC BEHAVIOR OF POLYMER
MELTS......................................................................................................88
2.4.7.1 ROUSE MODEL
(1953)........................................................... 89
2A7.2 TEMPORARY NETWORK
MODELS...............................................90
2A7.3 MODELS OF COOPERATIVE MOTION OF A CHAIN AND ITS
NEIGHBORS
......................................
90
2A7.4 REPTATION
MODELS............................................................... 90
2A7.5 POM-POM MODELS
...................................................
91
2.4.8 SOME VISCOELASTIC CONSTITUTIVE
EQUATIONS..........................................92
2.4.8.1 DIFFERENT TYPES OF VISCOELASTIC CONSTITUTIVE EQUATIONS . .92
2.4.8.1.1 EQUATIONS WITH MEMORY FUNCTION OR INTEGRAL
CONSTITUTIVE EQUATIONS
.......................................................
9,2
2.4.8.1.2 DIFFERENTIAL CONSTITUTIVE EQUATIONS
...................................
93
2A8.2 CHOICE OF A RHEOLOGICAL
MODEL...........................................95
2.4.9 PROBLEMS IN THE CONVECTED MAXWELL MODEL
...................
95
2.4.9.1 MAXWELL FLUID IN SIMPLE
SHEAR.........................................95
2A.9.2 SHEAR FLOW OF A MAXWELL FLUID BETWEEN PARALLEL DISKS.. .97
2.4.9.3 COUETTE FLOW OF A MAXWELL FLUID...............................
101
2.4.9.4 STRETCHING OF A MAXWELL
FLUID..........................................103
2.5 MEASUREMENT OF THE RHEOLOGICAL BEHAVIOR OF POLYMER MELTS
.....................
108
2.5.1 CAPILLARY RHEOMETER: VISCOSITY MEASUREMENTS
................................
108
2.5.1.1 PRINCIPLE OF THE MEASUREMENTS
.......................................
108
2.5.1.2 OBTAINING A VISCOSITY C
URVE.............................................110
2.5.1.3 INFLUENCE OF TEMPERATURE
.................................................
114
2.5.1.3.1 ARRHENIUS EQUATION
........................................................
115
2.5.1.3.2 WLF
EQUATION..................................................................116
2.5.1.3.3 MASTER
CURVES....................................................................117
2.5.1.4 INFLUENCE OF
PRESSURE........................................................ 118
2.5.2 SLIT DIE
RHEOMETER............................................................................
119
2.5.3 FLOW WITH A WALL S LIP
........................................................................
121
2.5.4 CONE-AND-PLATE
RHEOMETER.................................................................123
2.5.4.1 PRESENTATION OF THE CONE-AND-PLATE RHEOMETER
..............
123
2.5.4.2 STEADY S HEAR
....................................................................
123
2.5.4.3 OSCILLATORY SHEAR (SAGS)
.................................................
126
2.5.4.4 TRANSIENT
MODES...............................................................129
2.5.5 PARALLEL-PLATE RHEOMETER
..................................................................
130
2.5.5.1 STEADY S HEAR.............................................. 130
2.5.5.2 OSCILLATORY SHEAR (SAGS)
.
.
...............................................130
2.5.6 ELONGATIONAL RHEOMETRY
..........
.
........................................................
131
2.5.6.1 DIFFICULTIES IN ELONGATIONAL VISCOSITY MEASUREMENTS. . . 131
2.5. OE.2 ELONGATIONAL RHEOMETERS
................................................
132
2.5. OE.3 OTHER MEASUREMENT
METHODS.........................................133
2.5.6.3.1 ISOTHERMAL
STRETCHING.......................................................134
2.5. OE.3.2 CONVERGING
FLOWS............................................................134
2.5.7 NOTIONS OF RHEO-OPTICS
......................................................................
135
2.5.7.1 FLOW BIREFRINGENCE
.
.
........................................................
136
2.5.7.1.1 MEASUREMENT PRINCIPLE AND EXPERIMENTAL SETUP
..........
136
2.5.7.1.2 EXAMPLE OF EXPERIMENTAL
RESULTS....................................138
2.5.7.2 LASER DOPPLER VELOCIMETRY
..............................................
140
2.5.7.2.1 MEASUREMENT PRINCIPLE AND EXPERIMENTAL SETUP
..........
140
2.5.7.2.2 EXAMPLE OF RESULTS
...............................
141
2.5.8 PERSPECTIVE............................... 142
2.6 APPENDICES...........................................
.
.
......................................................142
2.6.1 APPENDIX 1: PHYSICS OF VISCOSITY
..............
142
2.6.1.1 EYRING THEORY
....................
142
2.6.1.2 MOLECULAR WEIGHT DEPENDENCE OF THE VISCOSITY OF
POLYMERS
..........................................................................
144
2.6.1.2.1 VISCOSITY OF POLYMERS HAVING A MOLECULAR WEIGHT
LESS THAN
MC
.....................................................................145
2.6.1.2.2 VISCOSITY OF POLYMERS HAVING A MOLECULAR WEIGHT
HIGHER THAN
MC ................................................................. 147
2.6.1.3 FREE VOLUME
THEORY........................................................ 148
2.6.2 APPENDIX 2: AN APPROACH TO VISCOELASTICITY:
ELASTIC DUMBBELL
MODEL.....................................................................149
2.6.2.1 INTEREST OF THE DUMBBELL
MODELS......................................149
2.OE.2.2 MODEL
DESCRIPTION............................................................150
2.6.2.3 DUMBBELL IN SIMPLE SHEAR
...............................................
151
2.6.2.3.1 HYDRODYNAMIC ACTIONS
.....................................................
151
2.6.2.3.2 FORCE DUE TO BROWNIAN MOTION
........
.................................
152
2.OE.2.3.3 BALANCE OF FORCES AND CONSERVATION OF THE NUMBER OF
MOLECULES...........................................................................152
2.OE.2.3.4 AVERAGE DEFORMATION OF THE MACROMOLECULE
.................
153
2.OE.2.3.5
COMMENTS.............................................................
154
2.6.2.4 MACROMOLECULE DEFORMATION IN COMPLEX FLOW S.............154
2.6.2.5 MACROMOLECULE DEFORMATION IN PLANAR EXTENSION
.........
156
2.6.2.OE CONCLUDING R EM ARKS
......................................................
157
2.6.3 APPENDIX 3: MATERIAL AND CONVECTED
DERIVATIVES...........................158
2.6.3.1 SUBSTANTIAL OR MATERIAL DERIVATIVE OF A T ENSOR
.............
158
2.OE.3.2 CONVECTED DERIVATIVE OF A
TENSOR...................................158
2.OE.3.3 SPECIAL CASE OF THE ROTATION OF A DISK ABOUT ITS AXIS .. .160
2.6.4 APPENDIX 4: RABINOWITSCH CORRECTION (RABINOWITSCH,
1929)...........162
2.6.5 APPENDIX 5: FLOW OF A VISCOELASTIC FLUID IN A CONE-AND-PLATE
GEOMETRY............................................................................................
163
2.6.5.1 KINEMATICS HYPOTHESES
................
164
2.OE.5.2 VISCOMETRIC FUNCTIONS
....................................................
165
2.6.5.3 DYNAMIC EQUILIBRIUM OF THE
SYSTEM...............................165
2.OE.5.4 SMALL CONE ANGLE LIMIT............................ 166
2.6.6 APPENDIX 6: VISCOMETRIC FLOWS
.......................................
168
REFERENCES................................................................................................................169
3 ENERGY AND HEAT TRANSFER IN POLYMER P RO CESSES
.....................................
177
3.1 BASIC NOTIONS ON HEAT
TRANSFER....................................................................
177
3.1.1 FIRST LAW OF THERMODYNAMICS
......................................
177
3.1.2 HEAT RECEIVED BY THE
SYSTEM............................................................. 178
3.1.3 POWER GENERATED BY INTERNAL FORCES
.................................................
178
3.1.3.1 WORK DONE BY DEFORMATION
.....................
178
3.1.3.1.1 EXTENSION OR
COMPRESSION................................................178
3.1.3.1.2 SIMPLE SHEAR
.........................
179
3.1.3.2 GENERALIZATION
...........
.
.......................................................179
3.1.3.3 POWER GENERATED BY INTERNAL FORCES (DISSIPATED POWER) 179
3.1.3.4 NEWTONIAN AND SHEAR-THINNING, POWER-LAW LIQUIDS
----
180
3.1.4 EQUATION OF
ENERGY.............................................................................180
3.1.5 INTERNAL ENERGY
....................................
181
3.1.5.1 TEMPERATURE-DEPENDENT INTERNAL ENERGY, E
....................
181
3.1.5.2 COMPRESSIBLE MATERIALS
.
...................................................184
3.1.5.3 CHANGE OF STATE OR CHEMICAL REACTION
...........................
184
3.1.6 BOUNDARY CONDITIONS
..............
185
3.1.6.1 MATHEMATICAL CONDITIONS
..................................................
185
3.1.6.2 CONDITIONS DEPENDING ON THE ENVIRONMENT
...................
185
3.1.6.2.1 POLYMER IN CONTACT WITH A METALLIC SURFACE
....................
185
3.1.6.2.2 POLYMER IN CONTACT WITH A FLUID (AIR OR WATER)
..............
188
3.1.7 SOLUTIONS OF THE HEAT TRANSFER
EQUATION.........................................189
3.2 COOLING IN MOLDS, IN AIR, AND IN WATER
.
..
.........
..........................................
190
3.2.1 CONTEXT
.................................................................
190
3.2.2 HEAT TRANSFER EQUATION
.
.
................
190
3.2.2.1 BODY AT REST
.............................
190
3.2.2.2 BODY IN MOTION
..............................
191
3.2.3 HEAT PENETRATION THICKNESS
...................
191
3.2.4 INTERFACIAL TEMPERATURE....................... 193
3.2.4.1 CONDUCTIVE HEAT TRANSFER: NOTION OF EFFUSIVITY..............193
3.2.4.2 CONDUCTIVE AND CONVECTIVE HEAT TRANSFER
......................
196
3.2.5 HEATING (OR COOLING) OF A PLATE
......................................
198
3.2.5.1 ISOTHERMAL BOUNDARY CONDITIONS
.......
.
.........................
198
3.2.5.1.1 EXACT SOLUTION
................................................................
.198
3.2.5.1.2 APPROXIMATE
SOLUTION....................................................... 199
3.2.5.2 CONVECTIVE BOUNDARY CONDITIONS
...................................
200
3.2.5.2.1 EXACT SOLUTION
.........................................................
200
3.2.5.2.2 APPROXIMATE SOLUTION.
............
.....................
202
3.3 POLYMER FLOW AND HEAT
TRANSFER...........................................
.
.....................
203
3.3.1 IMPORTANCE OF VISCOUS HEATING: THE BRINKMAN NUMBER
................
204
3.3.2 NOTION OF A THERMAL
REGIME.................................................... 204
3.3.3 THE EQUATIONS....................................................
205
3.3.3.1 ENERGY EQUATION
...............
205
3.3.3.2 CALCULATION OF THE DISSIPATED HEAT, W
............................206
3.3.3.2.1 NEWTONIAN BEHAVIOR
..........
...
.........................................206
3.3.3.2.2 SHEAR-THINNING, POWER-LAW
BEHAVIOR..............................206
3.3.4 EQUILIBRIUM REGIME
.
.............................. 207
3.3.4.1 EQUILIBRIUM REGIME FOR A NEWTONIAN POLYMER
..............
207
3.3.4.1.1 CONSTANT TEMPERATURE AT THE WALLS, T(R) - TW
................
207
3.3.4.1.2 CONVECTIVE BOUNDARY CONDITION
.....................................
208
3.3.4.2 EQUILIBRIUM REGIME FOR A POWER-LAW POLYMER AND A
CONSTANT WALL TEMPERATURE
.............................................
210
3.3.5 ADIABATIC
REGIME..............................................................................
211
3.3.6 TRANSITION REGIME FOR A NEWTONIAN FLUID
.........................................
213
3.3.6.1 AVERAGE TEMPERATURE WITH A CONVECTIVE BOUNDARY
CONDITION
..........................................................................
213
3.3.OE.2 EVALUATION OF THE NUSSELT NUMBER
(OR OF THE HEAT TRANSFER COEFFICIENT)................................214
3.3.6.2.1 EXPRESSION FOR
NUE(?...........................................................214
3.3.6.2.2 CONTROL TEMPERATURE EQUAL TO THE INITIAL POLYMER
TEMPERATURE.....................................................................215
3.3.6.2.3 CONTROL TEMPERATURE DIFFERENT FROM THE INITIAL POLYMER
TEMPERATURE
..............................................
216
3.3.7 TRANSITION REGIME WITH A POWER-LAW FLUID
.....................................
219
3.3.8 COMPARISON WITH AN EXACT SOLUTION
.................................................
220
3.3.8.1 CALCULATIONS WITHOUT MECHANICAL-THERMAL COUPLING.. .220
3.3.8.1.1 NEWTONIAN
POLYMER...........................................................220
3.3.8.1.2 SHEAR-THINNING
POLYMER...................................................223
3.3.5.2 COMPUTATIONS WITH THERMAL
COUPLING............................224
3.3.9 OTHER FLOW GEOMETRIES
......................................................................
224
3.3.9.1 SIMPLE SHEAR FLOW BETWEEN PARALLEL PLATES
....................
224
3.3.9.1.1 THERMAL EQUILIBRIUM REGIME
.........................................
225
3.3.9.1.2 ADIABATIC
REGIME.............................................................226
3.3.9.1.3 TRANSITION REGIME
................................
226
3.3.9.2 HEAT GENERATION IN PLANAR PRESSURE FLOW
.....................
227
3.3.10 APPLICATION TO FLAT DIE
EXTRUSION.................................................... 228
3.3.11 CONCLUSION..................
...................................................
...................
231
3.4
APPENDICES....................................................................................................
231
3.4.1 APPENDIX 1: CONVECTIVE HEAT TRANSFER
.............................................
231
3.4.1.1 FREE AND FORCED
CONVECTION.............................................231
3.4.1.2 THE BENARD
PROBLEM......................................................... 232
3.4.1.2.1 DESCRIPTION OF THE EXPERIMENTS
.......................................
232
3.4.1.2.2 DETERMINATION OF ATC (RAYLEIGH,
1916)............................233
3.4.1.3 HEAT TRANSFER BY FREE CONVECTION
...................................
235
3.4.1.3.1 GENERAL PRINCIPLES
......................................
235
3.4.1.3.2 HORIZONTAL
CYLINDER.........................................................235
3.4.1.3.3 VERTICAL PLATE OR
CYLINDER.................................................236
3.4.1.3.4 HORIZONTAL
PLATE................................................................
236
3.4.1.4 EXAMPLE: DETERMINATION OF THE HEAT TRANSFER COEFFICIENT
IN FREE
CONVECTION...........................................................237
3.4.1.4.1
INTRODUCTION......................................................................237
3.4.1.4.2 PHYSICAL PROPERTIES OF AIR AND W ATER
.............................
238
3.4.1.4.3 EXAMPLE
..............................................
239
3.4.1.5 FORCED CONVECTION
............................................................
239
3.4.1.5.1 INTRODUCTION
......................................................................
239
3.4.1.5.2 GENERAL
RELATIONSHIPS....................................................... 240
3.4.1.5.3 SPHERE
...........
.................................................................. 240
3.4.1.5.4 CYLINDER PERPENDICULAR TO THE FLOW STREAM
...................
240
3.4.1.5.5 PLATE OR CYLINDER PARALLEL TO THE FLOW STREAM
...............
240
3.4.1.5.6 EXAMPLE: DETERMINATION OF THE HEAT TRANSFER COEFFICIENT
IN FORCED
CONVECTION.......................................................241
3.4.2 APPENDIX 2: RADIATION HEAT TRANSFER
...............................................
242
3.4.2.1 BLACKBODY
.......................................................................
242
3.4.2.2 NONBLACKBODIES
................................................................
243
3.4.2.2.1 ABSORPTION OF NONBLACKBODIES
.........................................
243
3A2.2.2 RADIATION EMITTED BY A NONBLACKBODY
...........................
243
3.4.2.3 RADIATION HEAT EXCHANGE BETWEEN GRAY BODIES
..............
244
3.4.2.3.1
GENERALITIES......................................................................
244
3.4.2.3.2 EXAMPLES.............................................. 245
3.4.2.4 DETERMINATION OF RADIATION HEAT TRANSFER COEFFICIENT. .246
3.4.3 APPENDIX 3: INTERNAL ENERGY FOR COMPRESSIBLE M ATERIALS
..............
246
REFERENCES......................... 248
4 APPROXIMATIONS AND CALCULATION METHODS
.........
........................................
251
4.1 EQUATIONS FOR POLYMER PROCESSING
......................
251
4.2 CHOICE OF A RELEVANT RHEOLOGICAL CONSTITUTIVE
EQUATION..............................253
4.3 CHOICE OF BOUNDARY CONDITIONS
...................
255
4.3.1 KINEMATICS BOUNDARY
CONDITIONS.....................................................255
4.3.2 HEAT TRANSFER BOUNDARY
CONDITIONS.................................................256
4.3.3 INLET
CONDITIONS..................................................................................256
4.3.4 EXIT CONDITIONS....................... 256
4.4 APPROXIMATION METHODS....................... 257
4.4.1 APPROXIMATIONS CONCERNING THE GEOMETRY OF THE FLOW
......
..
..........257
4.4.1.1 UNWINDING OR FLATTENING OF AN ANNULAR OR A HELICAL
GEOMETRY
............................
257
4.4.1.2 DECOMPOSITION OF COMPLEX FLOW GEOMETRY IN SEVERAL
SIMPLE
FLOWS....................................................................
258
4.4.2 KINEMATICS APPROXIMATIONS
..........................................
259
4.4.2.1 LUBRICATION APPROXIMATIONS
...........................................
259
4.4.2.2 HELE-SHAW APPROXIMATIONS
..........
...................................260
4.4.2.3 APPROXIMATION OF A SLENDER BODY (OR THIN FILM)
............
263
4A.2.4 IMPORTANT
REMARK.............................................................. 265
4.4.3 APPROXIMATIONS FOR THE TEMPERATURE
...............................................
265
4.4.4 CONCLUSION AND APPLICATION EXAMPLE
...............................................
266
4.4.5
PROBLEMS............................................................................................
268
4.4.5.1 FLOW IN A
DIHEDRON...........................................................268
4.4.5.2 FLOW IN A
CONE...................................................................271
4.5 PRESSURE BUILDUP IN POLYMER FLOWS: HYDRODYNAMICS
BEARINGS..................272
4.5.1
INTRODUCTION........................................................................................
272
4.5.2 QUALITATIVE ANALYSIS OF SOME HYDRODYNAMICS BEARINGS
...................
273
4.5.2.1 RAYLEIGH
BEARING................................................................273
4.5.2.2 REYNOLDS B
EARING.............................................................273
4.5.2.3 FLOW BETWEEN TWO ROLLS
...................................................
274
4.5.3 PRESSURE GENERATED BY A SUDDEN FLOW RESTRICTION
(RAYLEIGH B EARING)
............................................................................
275
4.5.4 FLOW CALCULATION IN A BEARING OF VARIABLE GAP:
THE REYNOLDS EQUATION
.
......................................................................276
4.5.5 PROBLEM: REYNOLDS
BEARING...............................................................277
4.6 CALCULATION
METHODS......................................................................................279
4.6.1 CALCULATION METHODS AS FUNCTIONS OF THE TYPE OF FLOW
....................
279
4.6.1.1 SIMPLE SHEAR OR SIMPLE STRETCHING ISOTHERMAL FLOWS.. .279
4.6.1.2 UNIDIRECTIONAL ISOTHERMAL FLOWS
.........
...........................
279
4.6.1.3 NONISOTHERMAL SHEAR OR ELONGATION UNIDIRECTIONAL
FLOW
S................................................................................
280
4.6.1.4 BIDIRECTIONAL THIN LAYER FLOWS
(ISOTHERMAL OR NONISOTHERMAL)
.......................................
280
4.6.1.5 2D OR 3D
FLOWS..................................................................
280
4.6.2 SOLUTION OF UNIDIRECTIONAL FLOWS: SLAB METHOD
(OR INCREMENTAL M
ETHOD)...................................................................281
4.6.3 SOLUTION OF THE HELE-SHAW EQUATIONS
.....................
282
4.6.3.1 NEWTONIAN ISOTHERMAL CASE
.............................................
282
4.6.3.2 NON-NEWTONIAN ISOTHERMAL VISCOUS CASE........................284
4.OE.3.3 NONISOTHERMAL CASE (AVERAGE TEMPERATURE SOLUTION) . .285
4.6.4 2D AND 3D VISCOUS FLOW CALCULATIONS WITH A FINITE ELEMENTS
METHOD................................................................................................287
4.6.4.1 MECHANICAL EQUATIONS
......................................................
287
4.OE.4.2 MESHING.........................................................
287
4.6.4.3 FINITE ELEMENTS SOLUTION
............
.....................................289
4.6.4.4 FINITE ELEMENTS SOLUTION OF THE ENERGY EQUATION
...........
290
4.6.5 ISOTHERMAL FLOW VISCOELASTIC COMPUTATIONS
...................................
292
4.6.5.1 DIRECT SOLUTION METHODS
....................................................
292
4.OE.5.2 ITERATIVE M ETHODS.......................................... 293
4.7
APPENDIX........................................................................................................295
4.7.1 APPENDIX 1: ANALYSIS OF THE LUBRICATION APPROXIMATIONS
..............
295
4.7.1.1
INTRODUCTION......................................................................295
4.7.1.2 ANALYSIS OF THE RELATIVE WEIGHT OF THE TERMS OF THE
RATE-OF-STRAIN TENSOR
.......................................................
295
4.7.1.3 SIMPLIFICATION OF THE EQUATIONS OF MOTION
.
.....................
296
4.7.1.4 VALIDITY OF THE LUBRICATION APPROXIMATIONS
....................
297
REFERENCES...............................................................................................................298
5 SINGLE-SCREW EXTRUSION AND DIE FLOW S
.......................................................
301
5.1 SINGLE-SCREW EXTRUSION
..................................................................................
303
5.1.1 GEOMETRIC AND KINEMATIC DESCRIPTION
.............................................
303
5.1.1.1 THE DIFFERENT ZONES OF THE EXTRUDER
...............................
303
5.1.1.2 GEOMETRY OF THE SCREW
....................................................
304
5.1.1.3 DESCRIPTION OF THE SCREW CHANNEL
...................................
305
5.1.1.4 CLASSICAL APPROXIMATIONS.
..............................................
306
5.1.1.4.1 APPROXIMATION OF A FIXED BARREL AND A ROTATING SCREW .306
5.1.1.4.2 UNWOUND SCREW
CHANNEL................................................. 307
5.1.1.4.3 RELATIVE VELOCITY OF THE
BARREL.........................................308
5.1.1.5 REFERENCE
EXTRUDER.......................................................... 309
5.1.2 FEEDING
ZONE......................................................................................309
5.1.2.1 SOLID POLYMER CONVEYING
................................................
309
5.1.2.2 POLYMER-METAL FRICTION
..................................................
310
5.1.2.3 ARCHIMEDES*
SCREW...........................................................311
5.1.2.4 MODEL OF DARNELL AND MOLL (1956)
...................................
313
5.1.2.5 FLOW RATE CALCULATION AND OPTIMIZATION
.......................
315
5.1.2.6 ROLE OF PRESSU RE
..................
317
5.1.2.7 TECHNOLOGICAL CONSEQUENCES
...........................................
319
5.1.2.8 MODEL IMPROVEMENTS..............................................
320
5.1.3 MELTING
ZONE......................................................................................322
5.1.3.1 PHYSICAL DESCRIPTION OF THE
PHENOMENA..........................322
5.1.3.1.1 EXPERIMENTAL OBSERVATIONS
.............................................
322
5.1.3.1.2 DELAY ZONE (KACIR AND TADMOR, 1972)
...............................
324
5.1.3.1.3 INITIATION OF THE MELTING BY MELT
POOL..............................325
5.1.3.1.4 MELTING MECHANISM BY MELT POOL
...................................
325
5.1.3.2 INITIATION OF THE MELTING PROCESS BY MELT POOL
........
........
326
5.1.3.3 MELTING MODEL OF TADMOR AND KLEIN (1970)
...................
328
5.1.3.3.1 MELTING R ATE
....................................................................
328
5.1.3.3.2 CHANGES INDUCED BY THE CLEARANCE BETWEEN THE SCREW
AND THE BARREL
..........................
331
5.1.3.3.3 LENGTH OF THE MELTING ZONE; ROLE OF COMPRESSION
.........
332
5.1.3.4 OTHER
MODELS....................................................................
335
5.1.3.5 TECHNOLOGICAL CONSEQUENCES: BARRIER SCREWS................336
5.1.4 FLOW OF THE MOLTEN POLYMER
..............................................................
339
5.1.4.1 PUMPING
ZONE..................................................................
339
5.1.4.1.1 REVIEW OF THE
GEOMETRY...................................................340
5.1.4.1.2 FLOW
EQUATIONS.................................................................340
5.1.4.1.3 STUDY OF THE TRANSVERSE F LOW
.........................................
341
5.1.4.1.4 STUDY OF THE LONGITUDINAL FLOW
.......................................
343
5.1.4.1.5 CONCEPT OF RESIDENCE TIME DISTRIBUTION
........................
345
5.1.4.2 COMPRESSION Z O N E
..........................................................
348
5.1.4.3 ROLE OF THE SCREW/BARREL
CLEARANCE................................350
5.1.4.4 STUDY OF THERMAL PHENOMENA
.........................................
352
5.1.4.5 CONCEPT OF CHARACTERISTIC CURVES
.....................................
355
5.1.4.6 MODEL IMPROVEMENTS
......................................................
357
5.1.4.7 TECHNOLOGICAL
CONSEQUENCES...........................................358
5.1.4.7.1 DEGASSING EXTRUDERS (TWO-STAGE VENTED SCREWS)
..........
358
5.1.4.7.2 MIXING ELEMENTS
..............................................................
359
5.1.5 OVERALL MODEL OF SINGLE-SCREW
EXTRUSION.........................................361
5.1.5.1
INTRODUCTION......................................................................361
5.1.5.2 EXAMPLES OF
RESULTS.........................................................361
5.1.5.2.1 REFERENCE EXTRUDER
..........................................................
361
5.1.5.2.2 OPTIMIZATION OF THE PUMPING ZONE
.................................
364
5.1.5.3
CONCLUSIONS......................................................................
365
5.1.6 EXTRUSION PROBLEM S
..........................................................................
366
5.1.6.1 INITIATION OF THE MELTING BY MELT
POOL..............................366
5.1.6.2 MELTING REGIME BY MELT
POOL...........................................368
5.1.6.3 CRITERIA FOR CHOOSING AN EXTRUDER
...................................
373
5.2 EXTRUSION
DIES...............................................................................................
378
5.2.1 INTRODUCTION: ROLE OF AN EXTRUSION
DIE.............................................378
5.2.2 DESCRIPTION OF THE ENCOUNTERED GEOMETRIES
...................................
378
5.2.2.1 FILM-BLOWING DIES
............................................................
378
5.2.2.2 PIPE D IES
..........................................................................
379
5.2.2.3 PLATE DIES (OR FLAT D
IES)................................................... 380
5.2.2.4 PROFILE D IE S
......................................................................
381
5.2.2.5 WIRE-COATING
DIES.............................................................381
5.2.3 ASSUMPTIONS AND CALCULATION METHODS REVISITED
........
...................
382
5.2.4 EXAMPLES OF RESULTS
......
....................................................................383
5.2.4.1 FILM-BLOWING
DIES.............................................................383
5.2.4.2 PIPE D
IES..........................................................................
388
5.2.4.3 FLAT
DIES............................................................................
392
5.2.4.4 WIRE-COATING
DIES.............................................................395
S.2.4.5 PROFILE D
IES........................................................................399
5.2.5 CONCLUSION
......................................
402
5.2.6 DIE
PROBLEMS......................................................................................403
5.2.6.1 FLOW IN A FLAT
T-DIE...........................................................403
5.2.6.2 FLOW IN A FLAT COAT-HANGER D IE
.......................................
405
5.3 MULTILAYER FLOWS................................................ 408
5.3.1 INTEREST OF MULTILAYER FLOWS AND RELATED PROBLEMS
..........................
408
5.3.2 STUDY OF THE STEADY FLOW OF TWO VISCOUS FLUIDS BETWEEN PARALLEL
P
LATES.................................................................................................
410
5.3.2.1 CONTINUITY CONDITIONS AT THE INTERFACE
.............................
411
5.3.2.2 ISOTHERMAL NEWTONIAN TWO-LAYER FLOW
..........................411
5.3.2.3 GENERALIZATION TO POWER-LAW
BEHAVIOR............................414
5.3.3 FLAT DIE
COEXTRUSION..........................................................................
416
5.3.3.1 PROCESS
DESCRIPTION.........................................................416
5.3.3.2 ONE-DIMENSIONAL APPROACH
.............................................
417
5.3.3.3 TWO-DIMENSIONAL APPROACH
.............................................
420
5.3.3.4 TWO-DIMENSIONAL HELE-SHAW APPROACH..........................422
5.3.4 COEXTRUSION DIE PROBLEMS
................................................................
423
5.3.4.1 THREE-LAYER COEXTRUSION FLOW BETWEEN PARALLEL PLATES .423
5.3.4.2 COEXTRUSION FLOW IN A CAPILLARY
.....................................
425
5.4 APPENDIX
............................................
426
5.4.1 APPENDIX 1: CALCULATION OF SOLID VELOCITY IN SINGLE-SCREW
EXTRUSION...........................................................................................
426
REFERENCES..............................................................................................................
427
6 TWIN-SCREW EXTRUSION AND APPLICATIONS
....................................................
433
6.1 GENERAL DESCRIPTION OF TWIN-SCREW EXTRUSION PROCESS
...............................
433
6.1.1 DIFFERENT TYPES OF TWIN-SCREW EXTRUDERS
.......................................
433
6.1.2 FLOW
TYPES.........................................................................................
434
6.1.3 SPECIFIC FEATURES OF COROTATING TWIN-SCREW EXTRUSION
...................
436
6.1.4 GEOMETRY OF SCREWS AND BARREL
........................................................
438
6.1.5 CLASSICAL
APPROXIMATIONS..................................................................
442
6.1.6 DIFFERENT MODELING
APPROACHES.........................................................443
6.1.7 REFERENCE
EXTRUDER............................................................................443
6.2 SOLID CONVEYING AND
MELTING........................................................................
445
6.2.1 SOLID CONVEYING ZONE
.
.
.....................................................................
445
6.2.2 MELTING ZONE................................................ 447
6.3 MELT FLOW
......................................
451
6.3.1 RIGHT- AND LEFT-HANDED SCREW ELEMENTS
................
452
6.3.1.1 ONE-DIMENSIONAL MODELS
..................................................
452
6.3.1.2 TWO-DIMENSIONAL MODELS
..................................................
456
6.3.1.3 THREE-DIMENSIONAL M
ODELS.............................................457
6.3.1.4 THERMAL
EFFECTS................................................................
459
6.3.2 MIXING
ELEMENTS................................................................................
460
6.3.2.1 ONE-DIMENSIONAL
MODELS.................................................461
OE.3.2.2 TWO-DIMENSIONAL MODELS
................................................
464
6.3.2.3 THREE-DIMENSIONAL M ODELS
............................................
467
6.4 GLOBAL MODEL OF TWIN-SCREW
EXTRUSION.........................................................469
6.4.1 GENERAL DESCRIPTION
..........................................................................
469
6.4.2 RESIDENCE TIME
DISTRIBUTION.............................................................473
6.4.3 EXAMPLES OF RESULTS
.........................................................................
477
6.5 APPLICATION TO THE PRODUCTION OF POLYMER B LENDS
.......................................
481
6.5.1 BASIC
MECHANISMS..............................................................................
481
6.5.1.1 MECHANISMS OF RUPTURE
..................................................
482
6.5.1.2 MECHANISMS OF COALESCENCE
....................
484
6.5.2 MODELING ALONG THE EXTRUDER AND EXAMPLES OF RESULTS
................
485
6.6 APPLICATION TO COMPOUNDING
OPERATIONS.....................................................488
6.6.1 DIFFERENT TYPES OF
MIXING.................................................................488
6.6.2 DISTRIBUTIVE MIXING
............................................................................
489
6.6.3 DISPERSIVE MIXING: APPLICATION TO THE PRODUCTION
OF
NANOCOMPOSITES............................................................................
492
6.7 APPLICATION TO REACTIVE
EXTRUSION.................................................................499
6.8 OPTIMIZATION AND SCALE-UP
............................................................................
506
6.9
CONCLUSION......................................................................................................508
6.10 PROBLEM: SIMPLIFIED MODEL OF THE FLOW AROUND A KNEADING DISK
................
508
REFERENCES
.........................
.
...................................................................................
512
7 INJECTION
MOLDING.............................................................................................
521
7.1
DESCRIPTION......................................................................
521
7.2 FILLING
STAGE....................................................................................................526
7.2.1 PECULIARITIES OF THE FILLING
PHASE....................................................... 526
7.2.2 MAIN HYPOTHESES AND GOVERNING
EQUATIONS....................................526
7.2.2.1 PURELY VISCOUS FLOW
BEHAVIOR.........................................526
7.2.2.2
INCOMPRESSIBILITY.............................................................527
7.2.2.3 NEGLIGIBLE GRAVITATIONAL AND INERTIAL FORCES
...............
.527
7.2.2.4 EQUATIONS
..........................................................................
527
7.2.3 UNIDIRECTIONAL FLOWS
..........................................................................
528
7.2.3.1
INTRODUCTION......................................................................
52,8
7.2.3.2 FILLING OF A CENTER-GATED DISK M
OLD................................529
7.2.3.2.1 NEWTONIAN ISOTHERMAL BEHAVIOR
.....................................
530
7.2.3.2.2 ISOTHERMAL SHEAR-THINNING
BEHAVIOR..............................531
7.2.3.2.3 NONISOTHERMAL GENERALIZED NEWTONIAN BEHAVIOR
..........
532
7.2.4 THIN FLOW OR HELE-SHAW M ODELS
.......................................................
540
7.2.5 3D
COMPUTATIONS................................................................................
544
7.3 PACKING AND HOLDING P HASE
..........................................................................
548
7.3.1
INTRODUCTION........................................................................................548
7.3.2 SIMPLIFIED CALCULATIONS OF THE PACKING P
HASE..................................549
7.3.3 PHYSICAL DATA FOR THE PACKING-HOLDING CALCULATIONS
......................
551
7.3.3.1 MEASUREMENTS OF PVT DATA
.............................................
551
7.3.3.2
MODELING............................................................ 552
7.3.4
CALCULATIONS........................................................................................553
7.3.4.1 THIN-FLOW
APPROACHES.....................................................553
7.3.4.2 3D
COMPUTATIONS...............................................................556
7.3.5
CONCLUSIONS........................................................................................557
7.4 RESIDUAL STRESSES AND DEFORMATIONS
............................................
558
7.4.1 INTRODUCTION
.......................................................................................
558
7.4.2 MAIN PHYSICAL PHENOMENA INVOLVED
.................................................
558
7.4.2.1 THERMAL
SHRINKAGE............................................................558
7.4.2.2 FROZEN-IN
STRESSES.............................................................561
7.4.3 MEASUREMENT OF RESIDUAL
STRESSES...................................................562
7.4.4 CALCULATIONS OF RESIDUAL
STRESSES.....................................................563
7.5 NONSTANDARD INJECTION-MOLDING
TECHNIQUES................................................. 564
7.5.1 GAS-ASSISTED INJECTION MOLDING (GAIM)
...........................................
564
7.5.2 WATER-ASSISTED INJECTION MOLDING (WAIM)
.......................................
566
7.5.3 MULTICOMPONENT INJECTION
MOLDING...................................................567
7.6 INJECTION OF SHORT FIBER REINFORCED POLYMERS
...............................................
569
7.7
CONCLUSION.....................................................................................................
571
7.8
PROBLEMS.........................................................................................................
572
7.8.1 FILLING OF A CENTER-GATED D ISK
....................................................
* 572
7.8.2 BALANCING OF A MULTICAVITY
MOLD.......................................................575
REFERENCES..............................................................................................................
580
8
CALENDERING...................................................................................
587
8.1
INTRODUCTION................................................................................................
.587
8.2 RIGID FILM CALENDERING PROCESS......................... 588
8.2.1
PRESENTATION........................................................................................588
8.2.2 CALENDERING PROBLEMS
......................................................................
589
8.2.3 AIM OF CALENDERING PROCESS MODELING
..........
.
.................................
591
8.2.4 KINEMATICS OF CALENDERING
...................
591
8.2.5 ISOTHERMAL NEWTONIAN MODEL BASED ON LUBRICATION
APPROXIMATIONS.
.
....................
594
8.2.5.1 REYNOLDS
EQUATION...........................................................594
5.2.5.2 SPREAD HEIGHT CALCULATION
........
.......................................594
8.2.5.3 ROLL SEPARATING FORCE AND TORQUE EXERTED ON THE ROLL. .596
8.2.6 MORE GENERAL NEWTONIAN M ODELS
.....................................................
597
8.2.6.1 TWO-DIMENSIONAL MODEL
...................................................
597
8.2.6.2 INFLUENCE OF SLIPPAGE BETWEEN THE POLYMER AND THE
ROLLS..................................................................................
599
8.2.OE.3 CALENDERING ANALYSIS WHEN INTRODUCING A VELOCITY
DIFFERENTIAL BETWEEN THE ROLLS
.........................................
600
8.2.6.4 CONCLUSIONS OF THE DIFFERENT NEWTONIAN MODELS
............
601
8.2.7 SHEAR-THINNING CALENDERING M ODEL
.................................................
601
8.2.7.1 GENERALIZED REYNOLDS
EQUATION.........................................602
5.2.7.2 INTEGRATED GENERALIZED REYNOLDS EQUATION
....................
603
8.2.8 THERMAL EFFECTS IN
CALENDERING.........................................................604
8.2.9 VISCOELASTIC MODELS
............................................................................
608
8.2.10 USE OF CALENDERING M ODELS
........................................
608
8.3 POSTEXTRUSION CALENDERING
PROCESS...............................................................610
8.3.1 PRESENTATION
...........................................................................
610
8.3.2 PROCESS MODELING
..............................................................................
611
8.3.2.1 PRESSURE FIELD CALCULATIONS
..............................................
611
5.3.2.2 TEMPERATURE FIELD CALCULATIONS
..........
.............................
612
8.4
APPENDIX..............................................................
614
8.4.1 APPENDIX 1: CALCULATIONS OF TWO-DIMENSIONAL FLOW IN THE
CALENDER BANK BY A FINITE ELEMENT METHOD
.....................................
614
8.4.1.1 THE STOKES EQUATIONS IN TERMS OF THE STREAM AND
VORTICITY
FUNCTIONS...........................................................614
8.4.1.2 SOLVING THE STREAM AND VORTICITY EQUATIONS FOR THE 2D
CALENDERING PROBLEM (AGASSANT AND ESPY, 1985)
..........
615
REFERENCES...............................................................................................................
616
9 POLYMER STRETCHING
PROCESSES.....................................................................
619
9.1
INTRODUCTION...................................................................................................
619
9.2 FIBER
SPINNING................................................................................................619
9.2.1 DIFFERENT FIBER SPINNING SITUATIONS
.................................................
619
9.2.2 ISOTHERMAL MELT SPINNING OF A NEWTONIAN
FLUID..............................621
9.2.2.1 KINEMATICS HYPOTHESES
....................................................
622
9.2.2.2 SET OF
EQUATIONS...............................................................623
9.2.2.3 SOLUTION FOR ISOTHERMAL NEWTONIAN FIBER SPINNING
........
623
9.2.2.4 APPLICATION
EXAMPLES.......................................................624
9.2.2.5 VALIDITY OF THE APPROXIMATIONS U
SED..............................625
9.2.2.5.1 NEGLECTING THE SHEAR
COMPONENT....................................625
9.2.2.5.2 NEGLECTING THE GRAVITATIONAL (MASS) FORCE
......................
625
9.2.2.5.3 NEGLECTING THE INERTIA F ORCE
...........................................
626
9.2.3 ISOTHERMAL MELT SPINNING OF A VISCOELASTIC FLUID
............................
627
9.2.3.1
EQUATIONS..........................................................................627
9 2.3.2 DIMENSIONLESS EQUATIONS
................................................
628
9.2.3.3 SOLUTION
............................................................................
629
9.2.3.4
RESULTS..............................................................................
630
9.2.4 DRAWING OF A VISCOUS FLUID IN NONISOTHERMAL CONDITIONS
..............
632
9.2.4.1 MECHANICAL EQUATIONS
....................................................
632
9.2.4.1.1 EQUATIONS OF
MOTION........................................................632
9.2.4.1.2 FORCE BALANCE AT THE FILAMENT SURFACE
...........................
633
9.2.4.1.3 NEWTONIAN HYPOTHESIS
....................................................
634
9.2.4.2 HEAT TRANSFER EQUATION
..................................................
634
9.2.4.2.1 FORCED CONVECTION
TERM...................................................635
9.2.4.2.2 RADIATIVE HEAT TRANSFER
COEFFICIENT................................636
9.2A2.3 VISCOUS DISSIPATION RATE DURING DRAWING
.....................
636
9.2.4.3 SOLUTION FOR THE MOMENTUM AND HEAT TRANSFER
EQUATIONS..........................................................................
637
9.2.4.4
RESULTS..............................................................................637
9.2.5 MORE GENERAL MODELS OF FIBER SPINNING
...........................................
639
9.3 BIAXIAL
DRAWING.............................................................................................
640
9.3.1
INTRODUCTION........................................................................................640
9.3.2 BIAXIAL STRETCHING OF A NEWTONIAN LIQUID
.........................................
640
9.4 CAST-FILM
PROCESS.........................................................................................
642
9.4.1
PRESENTATION........................................................................................642
9.4.2 DIFFERENT KINEMATICS
APPROACHES.....................................................643
9.4.2.1 TWO-DIMENSIONAL MEMBRANE APPROACH
.........................
643
9.4.2.2 ONE-DIMENSIONAL MEMBRANE APPROACH..........................644
9.4.2.3 ONE-DIMENSIONAL APPROACH
.............................................
645
9.4.3 ONE-DIMENSIONAL NEWTONIAN
MODEL.................................................645
9.4.4 ONE-DIMENSIONAL MEMBRANE
MODEL.................................................646
9.4.4.1 EQUATIONS OF THE NEWTONIAN
MODEL.................................646
9.4.4.1.1 STRESS TENSOR.......................... 646
9.4.4.1.2 EQUATIONS
......
.............
.....................................................
647
9.4.4.1.3 BOUNDARY CONDITIONS
......................
647
9.4.4.2 RESULTS OF THE ONE-DIMENSIONAL NEWTONIAN MEMBRANE
MODEL................................................................................648
9A4.3 EQUATIONS OF A VISCOELASTIC
MODEL...................................649
9.4 A 4 RESULTS OF THE ONE-DIMENSIONAL VISCOELASTIC MEMBRANE
MODEL................................................................................651
9.4.5 TWO-DIMENSIONAL MEMBRANE
MODEL................................................. 652
9.4.5.1 EQUATIONS OF THE PROBLEM
................
652
9A5.2 RESULTS OF THE TWO-DIMENSIONAL MEMBRANE MODEL
.......
653
9.4.5.3 NONISOTHERMAL MODEL
......................................................
655
9.4.6
CONCLUSIONS........................................................................................
657
9.4.7 PROBLEM
S............................................................................................658
9.4.7.1 DRAWING OF A CONSTANT-WIDTH FILM
.................................658
9.4.7.2 EXTRUSION OF
TUBES...........................................................660
9.5 FILM-BLOWING
PROCESS....................................................................................661
9.5.1 PROCESS DESCRIPTION
..........................................................................
661
9.5.2 FILM
GEOMETRY....................................................................................
664
9.5.3 EQUATIONS OF THE FILM-BLOWING P ROCESS
...........................................
665
9.5.3.1 KINEMATICS OF BUBBLE FORMATION
.....................................
665
9.5.3.2 STRESSES ACTING ON THE BUBBLE
.........................................
665
9.5.3.2.1 FORCE BALANCE IN THE DRAWING DIRECTION AND MERIDIAN
S
TRESS................................................................................
665
9.5.3.2.2 FORCE BALANCE PERPENDICULAR TO THE FILM
.
.......................
667
9.5.3.2.3 ORDER OF MAGNITUDE OF THE STRESS COMPONENTS
..............
668
9.5.3.3 HEAT BALANCE EQUATIONS
...................................................
669
9.5.4 NONISOTHERMAL NEWTONIAN MODEL
.....................................................
670
9.5.4.1
EQUATIONS..........................................................................670
9.5.4.2 EXAMPLES OF
RESULTS......................................................... 671
9.5.5 NONISOTHERMAL VISCOELASTIC MODEL
...................................................
673
9.5.5.1
EQUATIONS..........................................................................673
9.5.5.2 EXAMPLES OF
RESULTS.........................................................674
9.5.6 A SEMIEMPIRICAL MODEL OF THE BLOWN-FILM PROCESS
..........................
677
9.5.7
CONCLUSIONS........................................................................................
678
9.6 MANUFACTURE OF HOLLOW PLASTIC
BODIES...........................................
...............
679
9.6.1 VARIOUS BLOW-MOLDING PROCESSES
......................................................
679
9.6.1.1 EXTRUSION BLOW MOLDING
..................................................
679
9.6.1.2 STRETCH BLOW-MOLDING
PROCESS.........................................680
9.6.1.3 PROBLEMS ENCOUNTERED IN BLOW M OLDING
.......................
680
9.6.2 MODELING OF EXTRUSION BLOW MOLDING
...............................................
681
9.6.2.1 MEMBRANE OR THICK SHELL?
..............................................
681
9 6.2.2 CHOICE OF RHEOLOGICAL
BEHAVIOR.......................................683
9 6.2.3 APPLICATION TO THE BLOWING OF A COMPLEX HOLLOW PART . .685
9.6.2.3.1 CURVILINEAR COORDINATES
...................................................
686
9.OE.2.3.2 DYNAMIC EQUILIBRIUM OF THE MEMBRANE
.........................
687
9 6.2.3.3 BOUNDARY CONDITIONS FOR THE PRESSURE
.....
.
...................
688
9.OE.2.3.4
EXAMPLE............................................................................690
9.6.3 STRETCH BLOW-MOLDING
PROCESS...........................................................692
9.6.3.1
INTRODUCTION......................................................................692
9.6.3.2 PROCESS
MODELING.............................................................692
9.6.3.2.1
MODEL................................................................................693
9.OE.3.2.2 BOUNDARY CONDITIONS
......................................................
694
9.OE.3.2.3 NUMERICAL SOLUTION
..........................................................
694
9.OE.3.3
EXAMPLE............................................................................695
9.6.4
CONCLUSIONS........................................................................................696
9.6.5 PROBLEM
S............................................................................................697
9.6.5.1 INFLATION OF A NEWTONIAN SPHERICAL MEMBRANE
.
............
697
9.6.5.2 BLOWING OF A TUBULAR NEWTONIAN MEMBRANE OF CONSTANT
LENGTH..............................................................................
698
9.OE.5.3 BLOWING OF A THICK NEWTONIAN TUBE OF CONSTANT LENGTH 701
9.7
APPENDICES.....................................................................................................704
9.7.1 APPENDIX 1: SOLUTION OF THE ISOTHERMAL CAST-FILM
EQUATIONS..........704
9.7.1.1 ONE-DIMENSIONAL MEMBRANE MODEL, NEWTONIAN CASE . .704
9.7.1.1.1 EQUATIONS
.........................................................................
704
9.7.1.1.2 DIMENSIONLESS VARIABLES
........
.......................................
706
9.7.1.1.3 SOLUTION
...........................................................................
707
9.7.1.2 TWO-DIMENSIONAL MEMBRANE MODEL: VISCOELASTIC CASE .707
9.7.1.2.1 DIMENSIONLESS VARIABLES............................... 708
9.7.1.2.2 SOLUTION
...........................................................................
709
9.7.1.3 TWO-DIMENSIONAL MEMBRANE MODEL...............................709
9.7.2 APPENDIX 2: COOLING OF FILMS IN AIR OR W ATER
.................................
711
9.7.2.1 PROBLEM
STATEMENT..........................................................711
9.7.2.2
SOLUTION.........................................................................
.712
9.7.2.3 COOLING OF THE FILM IN
AIR................................................. 712
9.7.2.3.1 HEAT TRANSFER COEFFICIENT BY CONVECTION
.
.......................
712
9.7.2.3.2 HEAT TRANSFER COEFFICIENT BY
RADIATION..........................713
9.7.2.5.3 COOLING
CALCULATIONS.........................................................714
9.7.2.3.4 RESULTS
.
........................................................... 714
9.7.2.4 COOLING OF THE FILM IN W ATER
...........................................
716
9.7.3 APPENDIX 3: SOLVING THE FILM BLOWING EQUATIONS
.
...........................
718
9.7.3.1 NEWTONIAN
CASE................................................................718
9.7.3.1.1 EQUATIONS AND UNKNOWNS........................... 718
9.7.3.1.2 DIMENSIONLESS VARIABLES
............................
719
9.7.3.1.3 SOLUTION.............................. 721
9.7.3.2 VISCOELASTIC CASE
.........................................
722
9.7.3.2.1 EQUATIONS AND
UNKNOWNS...............................................722
9.7.3.2.2 DIMENSIONLESS
VARIABLES.................................................723
9.7.3.2.3 SOLUTION
........................................
724
REFERENCES.........................................................................................
.....................
725
10 FLOW
INSTABILITIES...........................................................................................731
10.1 EXTRUSION
DEFECTS......................................................
.............
.....................
731
10.1.1 DESCRIPTION OF THE VARIOUS DEFECTS OBSERVED IN CAPILLARY
RHEOMETRY
.................
731
10.1.2 EXTRUSION DEFECTS OF LINEAR POLYMERS
...............................................
734
10.1.2.1 SHARKSKIN
DEFECT...............................................................734
10.1.2.1.1
DESCRIPTION.......................................................................734
10.1.2.1.2 DEFECT
QUANTIFICATION.......................................................
734
10.1.2.1.3 KEY
PARAMETERS.................................................................737
10.1.2.1.4
INTERPRETATION...................................................................739
10.1.2.1.5 REMEDIES
..........................................................................
742
10.1.2.2 OSCILLATING
DEFECT.............................................................745
10.1.2.2.1 PRESENTATION
........................................
745
10.1.2.2.2 KEY
PARAMETERS.................................................................747
10.1.2.2.3 BAGLEY
CORRECTIONS...........................................................748
10.1.2.2.4 STRESS AT THE
WALLS.............................................................749
10.1.2.2.5 DESCRIPTION OF THE OSCILLATING
CYCLE................................750
10.1.2.2.6 INTERPRETATION AND MECHANISMS
.....................................
752
10.1.2.2.7 MOLECULAR INTERPRETATION
.................................................
755
10.1.2.2.8 EXAMPLE OF DESCRIPTIVE MODEL
.........................................
756
10.1.2.2.9
REMEDIES...........................................................................758
10.1.3 EXTRUSION DEFECTS OF BRANCHED POLYMERS
.........................................
759
10.1.3.1
DESCRIPTION.......................................................................759
10.1.3.2 WALL SHEAR S
TRESS.............................................................761
10.1.3.3 INFLUENCE OF
GEOMETRY..................................................... 762
10.1.3.4
INTERPRETATION...................................................................764
10.1.3.4.1 REMEDIES
..........................................................................
768
10.1.4 SUMMARY AND
OUTLOOK.......................................................................769
10.2 COEXTRUSION DEFECTS
......
..............................
770
10.2.1 INVESTIGATION OF COEXTRUSION INSTABILITIES
.........................................
770
10.2.1.1 INFLUENCE OF THE FLOW
CONFIGURATION................................770
10.2.1.2 ANALYSIS OF THE FLOW WITHIN A COEXTRUSION D IE
..............
771
10.2.2 MODELING COEXTRUSION INSTABILITIES
...................................................
774
10.2.2.1 CONVECTIVE STABILITY
INVESTIGATION....................................774
10.2.2.1.1 ASYMPTOTIC STABILITY ANALYSIS
.........................................
775
10.2.2.1.2 CONVECTIVE STABILITY ANALYSIS
........
...................................
776
10.2.2.2 DIRECT NUMERICAL SIMULATION
...........................................
778
10.2.3
CONCLUSIONS....................................................................
780
10.3 CALENDERING
DEFECTS......................................................................................
781
10.3.1 DIFFERENT TYPES OF
DEFECTS.................................................................781
10.3.2 ANALYSIS OF THE MATTENESS D
EFECT.....................................................783
10.3.3 ANALYSIS OF THE V-SHAPED
DEFECT.......................................................784
10.3.4 ANALYSIS OF THE ROCKET DEFECT
......
.
....................................................
786
10.3.5
CONCLUSIONS......................................................................................
788
10.4 DRAWING
INSTABILITIES....................................................................................789
10.4.1 DESCRIPTION OF DRAWING INSTABILITIES
.................................................
789
10.4.1.1 EXAMPLE OF FIBER SPINNING
...............................................
789
10.4.1.2 EXAMPLE OF THE CAST-FILM
PROCESS....................................791
10.4.1.3 EXAMPLE OF THE FILM-BLOWING PROCESS
.............................
792
10.4.1.4
CONCLUSIONS......................................................................794
10.4.2 MODELING FIBER SPINNING INSTABILITY
.................................................
795
10.4.2.1 STRETCHING OF A NEWTONIAN FLUID UNDER ISOTHERMAL
CONDITIONS
........................................................................
795
10.4.2.2 INFLUENCE OF THERMAL
PHENOMENA...................................796
10.4.2.3 INFLUENCE OF VISCOELASTICITY
.............................................
798
10.4.3 MODELING CAST-FILM
INSTABILITY.........................................................799
10.4.3.1 STABILITY OF A CONSTANT FILM WIDTH STRETCHING MODEL.. .799
10.4.3.2 STABILITY OF A ID MEMBRANE MODEL ACCOUNTING FOR
NECK-IN..............................................................................
800
10.4.3.3 STABILITY OF THE 2D MEMBRANE M
ODEL..............................802
10.4.4 MODELING FILM-BLOWING INSTABILITIES
.................................................
803
10.4.5
CONCLUSION..........................................................................................806
REFERENCES...............................................................................................................
806
NOTATIONS....................................................................................................................
817
COLOR
SUPPLEMENT.....................................................................................................
827
SUBJECT INDEX,
837
|
any_adam_object | 1 |
author2 | Agassant, Jean-François Avenas, Pierre Carreau, Pierre J. |
author2_role | ctb ctb ctb |
author2_variant | j f a jfa p a pa p j c pj pjc |
author_GND | (DE-588)112277837 |
author_facet | Agassant, Jean-François Avenas, Pierre Carreau, Pierre J. |
building | Verbundindex |
bvnumber | BV044272384 |
classification_rvk | UV 9000 ZM 5250 |
ctrlnum | (OCoLC)989734830 (DE-599)BVBBV044272384 |
discipline | Physik Werkstoffwissenschaften / Fertigungstechnik |
edition | 2nd edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02152nam a2200505 c 4500</leader><controlfield tag="001">BV044272384</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170926 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170413s2017 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781569906057</subfield><subfield code="9">978-1-56990-605-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)989734830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044272384</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UV 9000</subfield><subfield code="0">(DE-625)146918:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 5250</subfield><subfield code="0">(DE-625)157063:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polymer processing</subfield><subfield code="b">principles and modeling</subfield><subfield code="c">Jean-François Agassant, Pierre Avenas, Pierre J. Carreau, Bruno Vergnes, Michel Vincent</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Munich ; Cincinnati</subfield><subfield code="b">Hanser</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLI, 841 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verarbeitung</subfield><subfield code="0">(DE-588)4537851-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kunststoffverarbeitung</subfield><subfield code="0">(DE-588)4114335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kunststofftechnik</subfield><subfield code="0">(DE-588)4166076-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kunststoffverarbeitung</subfield><subfield code="0">(DE-588)4114335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Verarbeitung</subfield><subfield code="0">(DE-588)4537851-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kunststofftechnik</subfield><subfield code="0">(DE-588)4166076-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agassant, Jean-François</subfield><subfield code="0">(DE-588)112277837</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Avenas, Pierre</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carreau, Pierre J.</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-56990-606-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029676960&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029676960</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044272384 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:48:22Z |
institution | BVB |
isbn | 9781569906057 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029676960 |
oclc_num | 989734830 |
open_access_boolean | |
owner | DE-12 DE-19 DE-BY-UBM DE-1050 DE-1102 DE-210 DE-703 DE-29T DE-83 |
owner_facet | DE-12 DE-19 DE-BY-UBM DE-1050 DE-1102 DE-210 DE-703 DE-29T DE-83 |
physical | XLI, 841 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Hanser |
record_format | marc |
spelling | Polymer processing principles and modeling Jean-François Agassant, Pierre Avenas, Pierre J. Carreau, Bruno Vergnes, Michel Vincent 2nd edition Munich ; Cincinnati Hanser [2017] © 2017 XLI, 841 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Verarbeitung (DE-588)4537851-4 gnd rswk-swf Kunststoffverarbeitung (DE-588)4114335-8 gnd rswk-swf Polymere (DE-588)4046699-1 gnd rswk-swf Kunststofftechnik (DE-588)4166076-6 gnd rswk-swf Kunststoffverarbeitung (DE-588)4114335-8 s DE-604 Polymere (DE-588)4046699-1 s Verarbeitung (DE-588)4537851-4 s 1\p DE-604 Kunststofftechnik (DE-588)4166076-6 s 2\p DE-604 Agassant, Jean-François (DE-588)112277837 ctb Avenas, Pierre ctb Carreau, Pierre J. ctb Erscheint auch als Online-Ausgabe 978-1-56990-606-4 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029676960&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Polymer processing principles and modeling Verarbeitung (DE-588)4537851-4 gnd Kunststoffverarbeitung (DE-588)4114335-8 gnd Polymere (DE-588)4046699-1 gnd Kunststofftechnik (DE-588)4166076-6 gnd |
subject_GND | (DE-588)4537851-4 (DE-588)4114335-8 (DE-588)4046699-1 (DE-588)4166076-6 |
title | Polymer processing principles and modeling |
title_auth | Polymer processing principles and modeling |
title_exact_search | Polymer processing principles and modeling |
title_full | Polymer processing principles and modeling Jean-François Agassant, Pierre Avenas, Pierre J. Carreau, Bruno Vergnes, Michel Vincent |
title_fullStr | Polymer processing principles and modeling Jean-François Agassant, Pierre Avenas, Pierre J. Carreau, Bruno Vergnes, Michel Vincent |
title_full_unstemmed | Polymer processing principles and modeling Jean-François Agassant, Pierre Avenas, Pierre J. Carreau, Bruno Vergnes, Michel Vincent |
title_short | Polymer processing |
title_sort | polymer processing principles and modeling |
title_sub | principles and modeling |
topic | Verarbeitung (DE-588)4537851-4 gnd Kunststoffverarbeitung (DE-588)4114335-8 gnd Polymere (DE-588)4046699-1 gnd Kunststofftechnik (DE-588)4166076-6 gnd |
topic_facet | Verarbeitung Kunststoffverarbeitung Polymere Kunststofftechnik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029676960&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT agassantjeanfrancois polymerprocessingprinciplesandmodeling AT avenaspierre polymerprocessingprinciplesandmodeling AT carreaupierrej polymerprocessingprinciplesandmodeling |