Hölder continuous Euler flows in three dimensions with compact support in time:
Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex i...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2017]
|
Schriftenreihe: | Annals of Mathematics Studies
number 196 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FHR01 FKE01 FLA01 TUM01 UBW01 UBY01 UPA01 FCO01 Volltext |
Zusammenfassung: | Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations. The construction itself—an intricate algorithm with hidden symmetries—mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"—used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem—has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture |
Beschreibung: | 1 Online-Ressource (x, 201 Seiten) |
ISBN: | 9781400885428 |
DOI: | 10.1515/9781400885428 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV044255710 | ||
003 | DE-604 | ||
005 | 20200629 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 170403s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781400885428 |9 978-1-4008-8542-8 | ||
024 | 7 | |a 10.1515/9781400885428 |2 doi | |
035 | |a (ZDB-23-DGG)9781400885428 | ||
035 | |a (OCoLC)968415598 | ||
035 | |a (DE-599)BVBBV044255710 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-Aug4 |a DE-859 |a DE-860 |a DE-20 |a DE-91 |a DE-898 |a DE-739 |a DE-706 |a DE-1046 |a DE-83 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 532.1 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Isett, Philip |d 1986- |0 (DE-588)1128680203 |4 aut | |
245 | 1 | 0 | |a Hölder continuous Euler flows in three dimensions with compact support in time |c Philip Isett |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a 1 Online-Ressource (x, 201 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 196 | |
520 | |a Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations. The construction itself—an intricate algorithm with hidden symmetries—mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"—used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem—has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Fluid dynamics |x Mathematics | |
650 | 0 | 7 | |a Eulersche Bewegungsgleichungen |0 (DE-588)4219070-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eulersche Formel |0 (DE-588)4359957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hölder-Stetigkeit |0 (DE-588)4332993-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Hölder-Stetigkeit |0 (DE-588)4332993-7 |D s |
689 | 0 | 1 | |a Eulersche Bewegungsgleichungen |0 (DE-588)4219070-8 |D s |
689 | 0 | 2 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | 1 | |a Eulersche Formel |0 (DE-588)4359957-6 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-17482-2 |
830 | 0 | |a Annals of Mathematics Studies |v number 196 |w (DE-604)BV040389493 |9 196 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400885428 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-PST |a ZDB-23-DGG |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA17 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029660734 | ||
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l UBW01 |p ZDB-23-DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l UBY01 |p ZDB-23-DMA |q UBY_Paketkauf17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400885428?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177427568525312 |
---|---|
any_adam_object | |
author | Isett, Philip 1986- |
author_GND | (DE-588)1128680203 |
author_facet | Isett, Philip 1986- |
author_role | aut |
author_sort | Isett, Philip 1986- |
author_variant | p i pi |
building | Verbundindex |
bvnumber | BV044255710 |
classification_rvk | SI 830 SK 600 SK 950 |
collection | ZDB-23-PST ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9781400885428 (OCoLC)968415598 (DE-599)BVBBV044255710 |
dewey-full | 532.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532.1 |
dewey-search | 532.1 |
dewey-sort | 3532.1 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1515/9781400885428 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05147nmm a2200745 cb4500</leader><controlfield tag="001">BV044255710</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200629 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170403s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400885428</subfield><subfield code="9">978-1-4008-8542-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400885428</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400885428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)968415598</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044255710</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Isett, Philip</subfield><subfield code="d">1986-</subfield><subfield code="0">(DE-588)1128680203</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hölder continuous Euler flows in three dimensions with compact support in time</subfield><subfield code="c">Philip Isett</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 201 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 196</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations. The construction itself—an intricate algorithm with hidden symmetries—mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"—used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem—has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eulersche Bewegungsgleichungen</subfield><subfield code="0">(DE-588)4219070-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eulersche Formel</subfield><subfield code="0">(DE-588)4359957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hölder-Stetigkeit</subfield><subfield code="0">(DE-588)4332993-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hölder-Stetigkeit</subfield><subfield code="0">(DE-588)4332993-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eulersche Bewegungsgleichungen</subfield><subfield code="0">(DE-588)4219070-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Eulersche Formel</subfield><subfield code="0">(DE-588)4359957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-17482-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 196</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">196</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400885428</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PST</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA17</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029660734</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">UBY_Paketkauf17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400885428?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV044255710 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:47:54Z |
institution | BVB |
isbn | 9781400885428 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029660734 |
oclc_num | 968415598 |
open_access_boolean | |
owner | DE-Aug4 DE-859 DE-860 DE-20 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-739 DE-706 DE-1046 DE-83 DE-1043 DE-858 |
owner_facet | DE-Aug4 DE-859 DE-860 DE-20 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-739 DE-706 DE-1046 DE-83 DE-1043 DE-858 |
physical | 1 Online-Ressource (x, 201 Seiten) |
psigel | ZDB-23-PST ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA17 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA17 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DMA UBY_Paketkauf17 ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Isett, Philip 1986- (DE-588)1128680203 aut Hölder continuous Euler flows in three dimensions with compact support in time Philip Isett Princeton, NJ Princeton University Press [2017] © 2017 1 Online-Ressource (x, 201 Seiten) txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 196 Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations. The construction itself—an intricate algorithm with hidden symmetries—mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"—used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem—has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture Mathematik Fluid dynamics Mathematics Eulersche Bewegungsgleichungen (DE-588)4219070-8 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Eulersche Formel (DE-588)4359957-6 gnd rswk-swf Hölder-Stetigkeit (DE-588)4332993-7 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Hölder-Stetigkeit (DE-588)4332993-7 s Eulersche Bewegungsgleichungen (DE-588)4219070-8 s Strömungsmechanik (DE-588)4077970-1 s DE-604 Partielle Differentialgleichung (DE-588)4044779-0 s Eulersche Formel (DE-588)4359957-6 s Erscheint auch als Druck-Ausgabe 978-0-691-17482-2 Annals of Mathematics Studies number 196 (DE-604)BV040389493 196 https://doi.org/10.1515/9781400885428 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Isett, Philip 1986- Hölder continuous Euler flows in three dimensions with compact support in time Annals of Mathematics Studies Mathematik Fluid dynamics Mathematics Eulersche Bewegungsgleichungen (DE-588)4219070-8 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Eulersche Formel (DE-588)4359957-6 gnd Hölder-Stetigkeit (DE-588)4332993-7 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
subject_GND | (DE-588)4219070-8 (DE-588)4044779-0 (DE-588)4359957-6 (DE-588)4332993-7 (DE-588)4077970-1 (DE-588)4113937-9 |
title | Hölder continuous Euler flows in three dimensions with compact support in time |
title_auth | Hölder continuous Euler flows in three dimensions with compact support in time |
title_exact_search | Hölder continuous Euler flows in three dimensions with compact support in time |
title_full | Hölder continuous Euler flows in three dimensions with compact support in time Philip Isett |
title_fullStr | Hölder continuous Euler flows in three dimensions with compact support in time Philip Isett |
title_full_unstemmed | Hölder continuous Euler flows in three dimensions with compact support in time Philip Isett |
title_short | Hölder continuous Euler flows in three dimensions with compact support in time |
title_sort | holder continuous euler flows in three dimensions with compact support in time |
topic | Mathematik Fluid dynamics Mathematics Eulersche Bewegungsgleichungen (DE-588)4219070-8 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Eulersche Formel (DE-588)4359957-6 gnd Hölder-Stetigkeit (DE-588)4332993-7 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
topic_facet | Mathematik Fluid dynamics Mathematics Eulersche Bewegungsgleichungen Partielle Differentialgleichung Eulersche Formel Hölder-Stetigkeit Strömungsmechanik Hochschulschrift |
url | https://doi.org/10.1515/9781400885428 |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT isettphilip holdercontinuouseulerflowsinthreedimensionswithcompactsupportintime |