Theta constants, Riemann surfaces and the modular group: an introduction with applications to uniformization theorems, partition identities and combinatorial number theory
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2001]
|
Schriftenreihe: | Graduate studies in mathematics
Volume 37 |
Schlagworte: | |
Online-Zugang: | UBM01 UBR01 Volltext |
Beschreibung: | 1 Online-Ressource (xxiv, 531 Seiten) Diagramme |
ISBN: | 9781470420895 |
DOI: | 10.1090/gsm/037 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV044219953 | ||
003 | DE-604 | ||
005 | 20210125 | ||
007 | cr|uuu---uuuuu | ||
008 | 170310s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781470420895 |c online |9 978-1-4704-2089-5 | ||
024 | 7 | |a 10.1090/gsm/037 |2 doi | |
035 | |a (OCoLC)1024100362 | ||
035 | |a (DE-599)BVBBV044219953 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-355 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA345 | |
082 | 0 | |a 515/.984 | |
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a 20H10 |2 msc | ||
084 | |a 30F35 |2 msc | ||
084 | |a 14H42 |2 msc | ||
100 | 1 | |a Farkas, Hershel M. |d 1939- |e Verfasser |0 (DE-588)172071666 |4 aut | |
245 | 1 | 0 | |a Theta constants, Riemann surfaces and the modular group |b an introduction with applications to uniformization theorems, partition identities and combinatorial number theory |c Hershel M. Farkas, The Hebrew University, Jerusalem, Israel and Irwin Kra, State University of New York, Stony Brook, NY |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2001] | |
264 | 4 | |c © 2001 | |
300 | |a 1 Online-Ressource (xxiv, 531 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Graduate studies in mathematics |v Volume 37 | |
650 | 4 | |a Riemannsche Fläche - Modulgruppe - Thetafunktion | |
650 | 0 | 7 | |a Kombinatorische Zahlentheorie |0 (DE-588)4164751-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Thetafunktion |0 (DE-588)4185175-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulgruppe |0 (DE-588)4170334-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Thetafunktion |0 (DE-588)4185175-4 |D s |
689 | 0 | 1 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |D s |
689 | 0 | 2 | |a Modulgruppe |0 (DE-588)4170334-0 |D s |
689 | 0 | 3 | |a Kombinatorische Zahlentheorie |0 (DE-588)4164751-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kra, Irwin |d 1937- |e Verfasser |0 (DE-588)134052498 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-8218-1392-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-8218-1392-7 |
830 | 0 | |a Graduate studies in mathematics |v Volume 37 |w (DE-604)BV044714883 |9 37 | |
856 | 4 | 0 | |u https://doi.org/10.1090/gsm/037 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-138-AMR | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029625944 | ||
966 | e | |u https://doi.org/10.1090/gsm/037 |l UBM01 |p ZDB-138-AMR |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1090/gsm/037 |l UBR01 |p ZDB-138-AMR |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177367098195968 |
---|---|
any_adam_object | |
author | Farkas, Hershel M. 1939- Kra, Irwin 1937- |
author_GND | (DE-588)172071666 (DE-588)134052498 |
author_facet | Farkas, Hershel M. 1939- Kra, Irwin 1937- |
author_role | aut aut |
author_sort | Farkas, Hershel M. 1939- |
author_variant | h m f hm hmf i k ik |
building | Verbundindex |
bvnumber | BV044219953 |
callnumber-first | Q - Science |
callnumber-label | QA345 |
callnumber-raw | QA345 |
callnumber-search | QA345 |
callnumber-sort | QA 3345 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 750 |
collection | ZDB-138-AMR |
ctrlnum | (OCoLC)1024100362 (DE-599)BVBBV044219953 |
dewey-full | 515/.984 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.984 |
dewey-search | 515/.984 |
dewey-sort | 3515 3984 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1090/gsm/037 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02552nmm a2200577 cb4500</leader><controlfield tag="001">BV044219953</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210125 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170310s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470420895</subfield><subfield code="c">online</subfield><subfield code="9">978-1-4704-2089-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/gsm/037</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1024100362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044219953</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA345</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.984</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20H10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30F35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14H42</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farkas, Hershel M.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172071666</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theta constants, Riemann surfaces and the modular group</subfield><subfield code="b">an introduction with applications to uniformization theorems, partition identities and combinatorial number theory</subfield><subfield code="c">Hershel M. Farkas, The Hebrew University, Jerusalem, Israel and Irwin Kra, State University of New York, Stony Brook, NY</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2001]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 531 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">Volume 37</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannsche Fläche - Modulgruppe - Thetafunktion</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Zahlentheorie</subfield><subfield code="0">(DE-588)4164751-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thetafunktion</subfield><subfield code="0">(DE-588)4185175-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulgruppe</subfield><subfield code="0">(DE-588)4170334-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Thetafunktion</subfield><subfield code="0">(DE-588)4185175-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Modulgruppe</subfield><subfield code="0">(DE-588)4170334-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Kombinatorische Zahlentheorie</subfield><subfield code="0">(DE-588)4164751-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kra, Irwin</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134052498</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-8218-1392-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-8218-1392-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">Volume 37</subfield><subfield code="w">(DE-604)BV044714883</subfield><subfield code="9">37</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/gsm/037</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-138-AMR</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029625944</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/gsm/037</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-138-AMR</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/gsm/037</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-138-AMR</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044219953 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:46:57Z |
institution | BVB |
isbn | 9781470420895 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029625944 |
oclc_num | 1024100362 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-83 DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-83 DE-11 |
physical | 1 Online-Ressource (xxiv, 531 Seiten) Diagramme |
psigel | ZDB-138-AMR |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | American Mathematical Society |
record_format | marc |
series | Graduate studies in mathematics |
series2 | Graduate studies in mathematics |
spelling | Farkas, Hershel M. 1939- Verfasser (DE-588)172071666 aut Theta constants, Riemann surfaces and the modular group an introduction with applications to uniformization theorems, partition identities and combinatorial number theory Hershel M. Farkas, The Hebrew University, Jerusalem, Israel and Irwin Kra, State University of New York, Stony Brook, NY Providence, Rhode Island American Mathematical Society [2001] © 2001 1 Online-Ressource (xxiv, 531 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Graduate studies in mathematics Volume 37 Riemannsche Fläche - Modulgruppe - Thetafunktion Kombinatorische Zahlentheorie (DE-588)4164751-8 gnd rswk-swf Thetafunktion (DE-588)4185175-4 gnd rswk-swf Modulgruppe (DE-588)4170334-0 gnd rswk-swf Riemannsche Fläche (DE-588)4049991-1 gnd rswk-swf Thetafunktion (DE-588)4185175-4 s Riemannsche Fläche (DE-588)4049991-1 s Modulgruppe (DE-588)4170334-0 s Kombinatorische Zahlentheorie (DE-588)4164751-8 s DE-604 Kra, Irwin 1937- Verfasser (DE-588)134052498 aut Erscheint auch als Druck-Ausgabe 978-0-8218-1392-8 Erscheint auch als Druck-Ausgabe 0-8218-1392-7 Graduate studies in mathematics Volume 37 (DE-604)BV044714883 37 https://doi.org/10.1090/gsm/037 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Farkas, Hershel M. 1939- Kra, Irwin 1937- Theta constants, Riemann surfaces and the modular group an introduction with applications to uniformization theorems, partition identities and combinatorial number theory Graduate studies in mathematics Riemannsche Fläche - Modulgruppe - Thetafunktion Kombinatorische Zahlentheorie (DE-588)4164751-8 gnd Thetafunktion (DE-588)4185175-4 gnd Modulgruppe (DE-588)4170334-0 gnd Riemannsche Fläche (DE-588)4049991-1 gnd |
subject_GND | (DE-588)4164751-8 (DE-588)4185175-4 (DE-588)4170334-0 (DE-588)4049991-1 |
title | Theta constants, Riemann surfaces and the modular group an introduction with applications to uniformization theorems, partition identities and combinatorial number theory |
title_auth | Theta constants, Riemann surfaces and the modular group an introduction with applications to uniformization theorems, partition identities and combinatorial number theory |
title_exact_search | Theta constants, Riemann surfaces and the modular group an introduction with applications to uniformization theorems, partition identities and combinatorial number theory |
title_full | Theta constants, Riemann surfaces and the modular group an introduction with applications to uniformization theorems, partition identities and combinatorial number theory Hershel M. Farkas, The Hebrew University, Jerusalem, Israel and Irwin Kra, State University of New York, Stony Brook, NY |
title_fullStr | Theta constants, Riemann surfaces and the modular group an introduction with applications to uniformization theorems, partition identities and combinatorial number theory Hershel M. Farkas, The Hebrew University, Jerusalem, Israel and Irwin Kra, State University of New York, Stony Brook, NY |
title_full_unstemmed | Theta constants, Riemann surfaces and the modular group an introduction with applications to uniformization theorems, partition identities and combinatorial number theory Hershel M. Farkas, The Hebrew University, Jerusalem, Israel and Irwin Kra, State University of New York, Stony Brook, NY |
title_short | Theta constants, Riemann surfaces and the modular group |
title_sort | theta constants riemann surfaces and the modular group an introduction with applications to uniformization theorems partition identities and combinatorial number theory |
title_sub | an introduction with applications to uniformization theorems, partition identities and combinatorial number theory |
topic | Riemannsche Fläche - Modulgruppe - Thetafunktion Kombinatorische Zahlentheorie (DE-588)4164751-8 gnd Thetafunktion (DE-588)4185175-4 gnd Modulgruppe (DE-588)4170334-0 gnd Riemannsche Fläche (DE-588)4049991-1 gnd |
topic_facet | Riemannsche Fläche - Modulgruppe - Thetafunktion Kombinatorische Zahlentheorie Thetafunktion Modulgruppe Riemannsche Fläche |
url | https://doi.org/10.1090/gsm/037 |
volume_link | (DE-604)BV044714883 |
work_keys_str_mv | AT farkashershelm thetaconstantsriemannsurfacesandthemodulargroupanintroductionwithapplicationstouniformizationtheoremspartitionidentitiesandcombinatorialnumbertheory AT krairwin thetaconstantsriemannsurfacesandthemodulargroupanintroductionwithapplicationstouniformizationtheoremspartitionidentitiesandcombinatorialnumbertheory |