Modern inorganic synthetic chemistry:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Amsterdam ; Kidlington ; Cambridge, MA
Elsevier
[2017]
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxii, 785 Seiten Illustrationen, Diagramme (teilweise farbig) |
ISBN: | 9780444635914 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044213802 | ||
003 | DE-604 | ||
005 | 20211122 | ||
007 | t | ||
008 | 170307s2017 a||| |||| 00||| ger d | ||
020 | |a 9780444635914 |c hbk. |9 978-0-444-63591-4 | ||
035 | |a (OCoLC)979536284 | ||
035 | |a (DE-599)BVBBV044213802 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a ger | |
049 | |a DE-11 |a DE-703 |a DE-19 | ||
082 | 0 | |a 541.39 | |
084 | |a VH 5500 |0 (DE-625)147263:253 |2 rvk | ||
084 | |a CHE 302f |2 stub | ||
084 | |a CHE 340f |2 stub | ||
245 | 1 | 0 | |a Modern inorganic synthetic chemistry |c edited by Ruren Xu and Yan Xu (Jilin University, Changchun, China) |
250 | |a Second edition | ||
264 | 1 | |a Amsterdam ; Kidlington ; Cambridge, MA |b Elsevier |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xxii, 785 Seiten |b Illustrationen, Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Anorganische Synthese |0 (DE-588)4068736-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metallorganische Verbindungen |0 (DE-588)4038906-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemische Synthese |0 (DE-588)4133806-6 |2 gnd |9 rswk-swf |
653 | |a Inorganic compounds / Synthesis | ||
689 | 0 | 0 | |a Anorganische Synthese |0 (DE-588)4068736-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Metallorganische Verbindungen |0 (DE-588)4038906-6 |D s |
689 | 1 | 1 | |a Chemische Synthese |0 (DE-588)4133806-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Xu, Ruren |0 (DE-588)1128445379 |4 edt | |
700 | 1 | |a Xu, Yan |0 (DE-588)1128445859 |4 edt | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029619978&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029619978 |
Datensatz im Suchindex
_version_ | 1804177357365313536 |
---|---|
adam_text | Contents
List of Contributors xix
Preface to the Second Edition xxi
1 Introduction 1
R -R Xu
1 1 Chemistry of Inorganic Synthesis 1
1 2 Major Scientific Issues in Modern
Inorganic Synthetic Chemistry 2
121 Development of New Synthetic
Reactions, Synthetic Routes,
Technologies, and Associated
Basic Scientific Studies 2
122 Sustainability in Modern
Inorganic Synthetic Chemistry 3
123 Basic Research on Synthetic and
Preparative Routes Under
Specific and Extreme
Conditions 4
124 Biomimetism as Tools in
Bioinspiration in Modern
Inorganic Synthesis 4
125 Rational Synthesis and
Molecular Engineering of
Inorganics With Specific
Structure and Function 5
References 6
2 High Temperature Synthesis 9
R -R Xu, Q Su
2 1 Attainment of High Temperature:
Laboratory Furnaces and Related
Techniques 9
211 Resistance Furnaces 9
212 Crystal Grower Equipment 9
213 Arc Melting Furnace 10
214 Spark Plasma Sintering 10
2 2 Types of High-Temperature Synthetic
Reactions and Routes 11
221 High-Temperature Solid-
Solid State Synthetic
Reactions 11
222 High-Temperature Solid-Gas
State Synthetic Reactions 11
2 3 High-Temperature Solid-State
Reaction 11
231 Mechanism and Characters of
Solid-State Reaction 12
232 Some Aspects of Synthesis Via
Solid-State Reaction 13
2 4 Preparation of Rare Earth Containing
Materials 14
241 Oxides and Complex
Oxides 14
242 Halides 16
243 Chalcogenides 16
244 Pnictides and Oxypnictides 18
2 5 Sol—Gel Process and Precursors in High
Temperature Solid Synthesis 19
251 The Chemistry of Sol—Gel
Synthesis 20
252 The Precursors in High
Temperature Solid-State
Synthesis 22
2 6 Self-Propagating High-Temperature
Synthesis 23
261 General Aspects 23
262 Chemical Classes of Self-
Propagating High-Temperature
Synthesis Reactions 24
263 Self-Propagating High-
Temperature Synthesis
Process and Its
Characterization 27
264 Activation of Self-Propagating
High-Temperature Synthesis
Processes 27
v
vi Contents
2 7 High-Temperature Preparation of Metal
Vapors and Active Molecules for Use in
Cryosynthesis 29
271 Techniques of Metal Vapor
Preparation 30
272 Attainment of High-Temperature
Species 30
2 8 High Temperature Electrolysis in Molten
Salt System 33
281 Basic of Molten Salt Electrolysis 33
282 Electrochemical Series of Molten Salts 33
283 Anode Effect 34
284 Examples of Molten Salt Electrolysis: Rare Earth Metal Preparation 35
285 Other Applications of Synthesis by Molten Salt Electrolysis 38
References 39
Synthesis and Purification at Low Temperatures 45
W -Q Pang, Y Xu
3 1 Attainment and Measurement of Low and Ultralow Temperatures 45
311 Attainment 45
312 Thermometry 46
3 2 Vacuum Technique and Its Applications in Inorganic Synthesis 46
321 Vacuum Attainment 47
322 Vacuum Measurement Principles and Typical Measurement Ranges 48
323 Common Vacuum Systems in Laboratory 48
3 3 Purification and Separation of Inorganics at Low Temperatures 52
331 Low-Temperature Fractional Condensation 52
332 Low-Temperature Fractional Distillation 53
333 Low-Temperature Selective Adsorption 55
334 Low-Temperature Chemical Separation 56
3 4 Synthesis of Volatile Inorganic Compounds at Low Temperatures 57
341 Synthesis of High-Purity AsF5 57
342 Syntheses of R3SiCo(CO)4-Type Compounds 57
3 5 Formation of Noble Gas Compounds
Under Cryogenic Conditions 58
351 Synthesis of Xe[PtFß] 59
352 Photochemical Synthesis of
KrF2 59
353 Synthesis of HXY Molecules by
Matrix Photogeneration 60
354 Synthesis of Stable Argon
Compounds 61
3 6 Freeze-Drying Synthesis 61
361 Locational Homogeneity of
Reactants 62
362 Avoidance of Particle
Agglomeration and Coarsening
for Improved Size
Uniformity 62
363 Aligned Two- and Three-
Dimensional Structures by
Ice-Templating 63
3 7 Inorganic Synthesis in Liquid
Ammonia 63
371 Reactions of Metals With Liquid
Ammonia 63
372 Reactions of Nonmetals With
Liquid Ammonia 64
373 Ammonolysis of Inorganic
Compounds in Liquid
Ammonia 64
374 Substitution Reactions in Liquid
Ammonia 64
375 Synthesis of MgCl2*6NH3 in
Liquid Ammonia 64
3 8 Cryosynthesis of Unusual Inorganic
Compounds 67
381 Classification of Cryo-Synthetic
Reactions 67
382 Basic Apparatus for Synthetic
Reactions 70
References 70
4 Hydrothermal and Solvothermal
Syntheses 73
S -H Feng, G -H Li
4 1 Foundation of Hydrothermal and
Solvothermal Syntheses 73
411 Features of Hydrothermal
Synthetic Reactions 73
412 Classification of Hydrothermal
Reactions 74
413 Property of Reaction
Medium 75
Contents vii
$
W:
j§ #•! 4 2 Functional Materials From Hydrothermal 5 2 Effects of High Pressure on Basic States
and Solvothermal Systems 76 of Matter 115
*421 Single Crystals 78 521 Gas Under High Pressure 115
i422 Zeolites and Related 522 Solids Under High Pressure 116
1 Materials 79 523 Water Under High Pressure 118
i 423 Organic—Inorganic Hybrid 5 3 Effects of High Pressure on inorganic
4 - Materials 82 Chemical Reactions 119
■4 424 Ionic and Electronic 531 Influence of Pressure
Conductors 84 on Thermodynamics and
%425 Nanomaterials 86 Dynamics of Inorganic
4: 4 3 Hydrothermal Biochemistry 87 Reaction 119
4 • 431 Warm Pond: Hydrothermal 532 The Impact of Pressure on
| Seafloor 87 Inorganic Reaction 120
F432 Evolutionary Tree and Time 5 4 Effects of High Pressure on Crystal and
Evidence 87 Electronic Structures of Inorganic
§ 433 Chemical Ladder: Synthesis and Compounds 121
f Evolution 88 541 Changes in Crystal Structure at
434 Expectation 89 High Pressure 121
4 4 Supercritical Water: A Novel Reaction 542 Electronic Structure Changes
System 89 Under High Pressures 124
jf; 441 Properties of Supercritical 5 5 Major Roles of High-Pressure Method in
Water 90 Inorganic Synthesis 126
amp;442 Chemical Applications of 551 High Pressure Could Prevent the
1 Supercritical Water 91 Decomposition of Thermally
1443 Technological Applications of Unstable Starting Reagents 127
i: Supercritical Water 93 552 High-Pressure Can Improve the
f45 Techniques and Methods 93 Densification Effect and
Jf 451 Reaction Containers 93 Consequently Help the
f; ■ 452 Reaction Control Systems 96 Preparation of Compact
453 General Experimental Structures 127
Procedure 96 553 High-Pressure Can Decrease
454 In Situ Characterization Reaction Temperature and
amp; Techniques 96 Shorten Reaction Time 128
• 4 6 lonothermal Synthesis 97 554 High Pressure Can Stabilize the
■IS References 100 Highest Oxidation States of
*» Transition Metals Through the
fV 5 High Pressure Synthesis and Development of High Oxygen or Fluorine Pressures 128
1: Preparation of Inorganic 555 High Pressure Can Hinder the
1 Materials 105 Disproportionation of
f: X -K Liu Intermediate Oxidation
#: sSfjl States 129
J4 ■§ amp;; 5 1 Experimental Methods of Inorganic 556 High Pressure Aids in Synthesis
P: Synthesis Under High Pressure 106 of Light Element Compounds
8 511 High-Pressure Apparatus 106 That Have Special Physical
£ 512 The Choice of Pressure- Properties 129
Jf; Transmitting Media 109 557 Preparation of Important
§■ 513 Pressure Calibration 110 Amorphous and Quasi-
SF 514 Generation of High- Crystalline Materials Using
Temperature 112 High-Pressure Methods 129
515 Summary 114 558 Conclusion 129
lv
i
viii Contents
5 6 Some Important Inorganic Compounds
Synthesized Under High Pressure 130
561 Synthesis of Diamond Under High Pressure 130
562 Synthesis of Cubic Boron Nitride (c-BN) Under High Pressure 131
563 High Pressure Synthesis of C3N4 132
564 The Synthesis of Superconductors Under High Pressure 133
565 The High Pressure Synthesis and Properties of the Compounds Containing Special Oxidation State Transition Metals 134
566 Summary 135
References 135
6 Inorganic Photochemical
Synthesis 143
X -S Liu
6 1 Introduction 143
6 2 The Basic Concepts 143
621 Photon Energy 144
622 Light Absorption 144
623 Quantum Yield 145
6 3 Experimental Techniques 145
631 Light Sources 145
632 Reactors 145
633 Photon Actinometer 145
6 4 Photochemical Synthesis of
Organometallic Complexes 146
641 Photosubstitution 146
642 Photoisomerization 149
643 Photosensitized Metal—Metal
Bond Cleavage Reaction 150
644 Photoinduced Electron Transfer
and Redox Reactions 150
6 5 Photochemical Synthesis of Inorganic
Compounds 151
651 Photochemical Synthesis via
Photosensitization 151
652 Photochemical Synthesis of
Boranes and Their
Derivatives 151
653 Synthesis of Chlorine Gas via
Photolysis 152
654 Photochemical Synthesis of
Fluorides 152
655 Photochemical Synthesis of
H202 152
6 6 Synthesis of Inorganic Thin Films via
Photochemical Reactions 153
661 Laser-Assisted Thin Film
Formation of Inorganic
Materials 153
662 Film Formation via Solution
Photochemical Deposition 156
6 7 Photochemical Synthesis of
Nanomaterials 157
6 8 Production of H2 via
Photodecomposition of Water 158
6 9 Summary 160
References 161
7 Chemical Vapor Deposition and
Its Applications in Inorganic
Synthesis 167
J -T Wang
7 1 Brief History of Chemical Vapor
Deposition 167
7 2 Technical Fundamentals of Chemical
Vapor Deposition 169
721 Simple Pyrolysis Reaction 169
722 Reduction-Oxidation
Depositions 170
723 Deposition Through Synthetic
Reaction 170
724 Deposition Through Chemical
Mass Transportation 170
725 Plasma Enhanced Chemical
Vapor Deposition (PECVD or
PCVD) 171
726 Atomic Layer Chemical Vapor
Deposition (ALCVD
orALD) 171
7 3 Low-Pressure Chemical Vapor Deposi-
tion and Its Simulation Model 172
7 4 Activated Low-Pressure Chemical Vapor
Deposition Diamond Syntheses 174
7 5 Modern Thermodynamic Coupling
Model of Chemical Vapor Deposition
Diamond Syntheses 177
7 6 Nondissipative Thermodynamics and
Nonequilibrium Phase Diagrams 179
7 7 Dissipative Thermodynamics and
Chemical Oscillations 183
78A Complete Basic Discipline of
Thermodynamics 185
79A New Statement of the Second Law of
Thermodynamics 186
References 187
Contents ix
8 Synthesis of Coordination
Compounds and Coordination
Polymers 189
M -L Tong, X -M Chen
8 1 Introduction to Coordination
Compounds and Coordination
Polymers 189
811 Brief History of Coordination
Compounds 189
812 Brief History and Definition of
Coordination Polymers 190
813 Nets of Coordination
Polymers 190
8 2 Synthetic Methods of Coordination
Compounds 190
821 Conventional Methods 190
822 Nonconventional Method 191
823 New Synthetic Methods 192
8 3 Rational Synthesis of Coordination
Compounds 193
831 Metalloligand Approach 193
832 Compartmentalized Ligand
Approach 194
833 Templating Approach 195
834 Substituent Reaction
Approach 197
835 Chiral Resolution 198
8 4 Molecular Design of Coordination
Polymers 199
841 Molecular Assembly 199
842 Single Metal Noded Nets 199
843 Metal-Cluster Noded
Nets 201
844 Pillared-Layer Nets 205
8 5 Structural Modulation of Coordination
Polymers by Reaction Conditions 205
851 Temperature Effect 206
852 pH Effect 207
853 Template and Additive
Effect 208
854 Solvent Effect 210
855 Counter-Ion Effect 210
856 In Situ Metal/Ligand
Reactions 211
8 6 Postsynthetic Modification of Porous
Coordination Polymers 212
861 Metal Site Modification 213
862 Organic Ligand
Modification 214
References 215
9 Cluster Compounds 219
G -Y Yang, D -C Huang
9 1 Description of the Clusters 219
911 Definition of a Cluster and
the Clusters 219
912 Classification of the
Clusters 219
913 The Oxo Clusters 219
9 2 Synthesis of the Oxo Transition Metal
Clusters Under Hydrothermal
Conditions 220
921 Substituted Synthesis on
Polyoxometalate Cages 220
922 Lacunary Directing Synthesis
via the Lacunary Sites of
Polyoxometalate Fragments 221
923 Synergistic Directing Synthesis
via Two or More Lacunary XWg
Fragments 222
924 Designed Synthesis via the
Peripheral Substitution of
Ni6PW9 Structural Building
Units 225
9 3 Synthesis of the Oxo Lanthanide
Clusters Under Hydrothermal
Conditions 226
931 Induced Synthesis via the
Ligands 227
932 Synergistic Coordination
Between the First and Secondary
Ligands 228
9 4 Synthesis of the Oxo Main Group
Clusters Under Hydrothermal
Conditions 229
941 Templated Synthesis of
Borates 229
942 Templated Synthesis of
Germanates and
Borogermanates 231
943 Self-Polymerization and
Induced Congregation
of Lanthanide
Germanate Clusters 232
9 5 Synthesis of the Chalcogenide Clusters
Under Hydro(solvo)thermal
Conditions 233
951 Tetrahedral Clusters
952 Tn Clusters 233
953 Pn Clusters 234
954 Cn Clusters 234
x Contents
955 Other Types of Supertetrahedral
Clusters 234
956 Open-Framework Chalcogenides
Made From Different
Tetrahredral Clusters 234
957 Open-Framework Chalcogenides
Based on Tetrahredral
Clusters and Organic
Linkers 234
9 6 Synthesis of the Iron—Sulfur
Clusters 235
961 Iron—Sulfur Clusters 235
962 Mo(V)—Fe—S(Se) Clusters 236
963 Heteroligated Mo(W)—Fe—S(Se)
Clusters 238
964 Carbon Monoxide
Dehydrogenase 238
9 7 Synthesis of the Metal Carbonyl
Clusters 239
971 Metal Carbonyl Clusters 240
972 Mixed-Metal Carbonyl
Clusters 242
References 242
10 Synthesis of Organometallic
Compounds 247
JKC Abbott, B A Smith, T M Cook, Z -L Xue
10 1 Synthetic Reactions 248
10 1 1 Ligand Substitution 248
10 1 2 Oxidative Addition and
Reductive Elimination 249
10 1 3 Insertion and
Elimination 251
10 1 4 Nucleophilic and
Electrophilic Attack on
Coordinated Ligands 254
10 1 5 Reactions of Metal Vapors
With Ligands or Ligand
Precursors 259
10 2 Preparation of Typical Organometallic
Compounds 259
10 2 1 Metal Carbonyls 259
10 2 2 Complexes With M—C
cr Bonds 261
10 2 3 Complexes With M—C
Multiple Bonds 262
10 2 4 Metal Hydrides 268
10 2 5 7T Complexes 269
10 2 6 Paramagnetic
Complexes 272
10 3 Experimental Techniques 273
References 275
11 Synthesis and Assembly Chemistry
of Inorganic Polymers 279
X -Z Tang, X -B Huang
11 1 Polyphosphazenes 279
11 2 Synthesis of Novel Phosphazenes
Compounds 280
11 2 1 Micro-Crosslinked
Polyphosphazenes 280
11 2 2 Star-Shaped
Polyphosphazenes 282
11 2 3 Penta-Armed
Polyphosphazenes 282
11 2 4 Polyphosphazenes With
Nonlinear Optical
Properties 285
11 2 5 Phosphazene Separation
Membranes 285
11 2 6 Phosphazene-Modified
Polyurethane 286
11 3 Synthesis and Assembly Chemistry of
Cyclophosphazene 287
11 3 1 In Situ Template
Method 289
11 3 2 Self-Assembly of Primary
Particles 289
11 3 3 Surface Polymerization
on the Nano- or
Microparticles 290
11 3 4 Functional Polyphazene
Nanomaterials 292
11 4 Applications of Cyclomatrix
Polyphosphazene Nanomaterials 298
11 4 1 Phosphazene Solid Polymer
Electrolytes 298
11 4 2 Precursor for Heteroatom-
Doped Carbon
Materials 301
References 304
12 Soft Inorganic Supramolecular
Systems 307
L-X Wu
12 1 General Concepts and
Methodology 307
12 1 1 Isolated Polyoxometalate
Clusters 307
12 1 2 Self-Assembly of
Naked POMs in
Solutions 308
Contents xi
12 1 3 The Self-Assembly of Organic
Group Covalently Modified
POMs in Solutions 309
12 1 4 Phase Transfer and
Supported Building
Blocks 311
12 1 5 Other Clusters 311
12 2 Assembly of POM Complexes In
Solutions 311
12 2 1 Self-Assembly of Covalently
Modified Clusters Assisting
by Organic
Counterions 311
12 2 2 Assembly of POM
Electrostatic Complexes in
Hydrophobic Solvent
Systems 312
12 2 3 Assembly of Electrostatic
POM Complexes in
Hydrophilic Solvent
Systems 313
12 2 4 Inorganic—Organic
Supramolecular Gels 314
12 3 The Assembly of POMS in
Polymers 316
12 3 1 Covalent Connection of
POMs With Polymer
Chains 316
12 3 2 Supramolecular Combination
of POMs With
Polymers 317
12 3 3 Dispersion in Polymers 318
12 4 Assembly of POMS on Surfaces 320
12 4 1 The Adsorption of POM
Clusters on Solid
Surface 320
12 4 2 Cluster/Particle Supported
Pattern Formation 321
12 4 3 Cluster-Patterned Surface for
Domain Reactions 321
12 4 4 Pattern Formation From
Extended Clusters and
Particles 321
12 5 Assembly of POMS in Liquid
Crystals 322
12 5 1 Introduction of Clusters Into
Liquid Crystals 323
12 5 2 Assembly in Lyotropic Liquid
Crystals 324
12 5 3 Self-Assembly in
Thermotropic Liquid
Crystals 325
References 327
13 Nonstoichiometric
Compounds 329
J -L Zhang, G -Y Hong
13 1 Introduction to Nonstoichiometric
Compounds 330
13 1 1 Definition 330
13 1 2 Classification 331
13 1 3 Point Defects in the
Nonstoichiometric
Compounds 331
13 2 Synthesis of Nonstoichiometric
Compounds 333
13 2 1 Formation Mechanism 333
13 2 2 Phase Diagram 335
13 2 3 Synthesis Methods 337
13 3 Characterization of Nonstoichiometric
Compounds 351
13 3 1 Composition Analysis 351
13 3 2 Structure
Determination 351
13 3 3 Defect Detection 352
References 352
14 Inorganic Synthesis of
Actinides 355
W-Q Shi, L Mei, Z -F Chai
14 1 The Oxidation State and Coordina-
tion Number of Actinides 355
14 2 Actinide Coordination
Compounds 356
14 2 1 Inorganic Actinide
Compounds 356
14 2 2 Actinide-Organic
Compounds 361
14 3 Actinide-Based Nanomaterials 371
14 3 1 Actinide Oxide/Hydroxide
Nanostructures 371
14 3 2 Actinide-Containing Hybrid
Nanomaterials 375
14 3 3 Actinyl Peroxide Cage
Clusters 377
14 4 Fabrication of Nuclear Fuels 378
14 4 1 Fabrication of Metal
Fuel 378
14 4 2 Fabrication of Dispersion
Fuel 379
14 4 3 Fabrication of Ceramic
Fuel 380
14 5 Concluding Remarks 382
Acknowledgments 382
References 382
xii Contents
15 Synthetic Chemistry of the
Inorganic Ordered Porous
Materials 389
Z -A Qiao, Q -S Huo
15 1 Porous Materials 389
15 2 Zeolite änd Its Structure 390
15 2 1 Basic Structural Unit of the
Zeolite 390
15 2 2 Framework Structure of
Zeolite and Molecular
Sieve 391
15 2 3 Intergrowth in
Zeolite 392
15 2 4 The Composition of
Zeolite and Molecular
Sieve 392
15 3 The Synthesis of Zeolite 393
15 3 1 Hydrothermal Zeolite
Synthesis 393
15 3 2 Zeolite Crystallization and
Formation
Mechanism 393
15 3 3 Optimization of Zeolite
Synthesis 394
15 4 Zeotype: Zeolite-Like
Materials 395
15 4 1 The Pure Silica Molecular
Sieves and Clathrasil
Compounds 395
15 4 2 Aluminophosphate and
Other Phosphate Molecular
Sieves 395
15 4 3 Organic—Inorganic Hybrid
Zeolite and Microporous
AIPO 396
15 5 New Strategies and New Trends of
Zeolite Synthesis 396
15 5 1 Ultra-Large Pore Zeolites
and Zeolite-Like
Materials 396
15 5 2 Large Crystal 397
15 5 3 Nanocrystal 397
15 5 4 Phase Transition 398
15 5 5 Nonaqueous Synthesis:
Solvothermal, lonothermal,
Dry Gel Systems, and
Solvent-Free
Synthesis 399
15 5 6 Mesoporous Zeolites 400
15 5 7 F~ as Mineralizer 400
15 6 Basics of Ordered Mesoporous
Materials 400
15 7 Understanding the Synthesis of
Mesoporous Materials 402
15 7 1 Synthetic System 402
15 7 2 Formation Mechanism of
Mesostructure: Liquid
Crystal Template and
Cooperative Self-
Assembly 402
15 7 3 Interaction Between
Organic Template and
Inorganic Species 403
15 7 4 The Surfactant Packing
Parameter 403
15 8 Typical Mesostructures and
Mesoporous Materials 404
15 8 1 2D Hexagonal Structure:
MCM-41, SBA-15, FSM-16,
and SBA-3 404
15 8 2 Cubic Channel Meso-
structures: MCM-48,
FDU-5, and lm-3m
Materials 405
15 8 3 Cubic Caged
Structures 405
15 8 4 Deformed Mesophases, Low
Ordered Mesostructures,
and Other Possible
Mesophases 407
15 8 5 Siliceous Mesostructured
Cellular Foams (MCFs) 407
15 8 6 New Mesostructure 407
Synthesis Strategies for Mesoporous
Silica 407
15 9 1 Template 407
15 9 2 Organic Additives 409
15 9 3 Pore Size Control 409
15 9 4 Post-Synthesis Hydro- thermal Treatment 409
15 9 5 Stabilization of Silica Mesophases 410
15 9 6 Synthesis Through Acid- Base Pair 410
15 9 7 Evaporation-Induced Self-Assembly (EISA) Process 410
15 9 8 Chemical Modification: Grafting and Co-Condensation 411
Contents xiii
15 9 9 Periodic Mesoporous
Organosilicas
(PMOs) 411
15 9 10 Nanocasting 411
15 10 New Compositions: Non-Silica-
Based Mesoporous Materials
412
15 10 1 Metal Oxides and Other
Inorganic Materials 412
15 10 2 Mesoporous
Polymer 414
15 10 3 Other Mesoporous
Materials 414
15 11 Morphology Control in Mesoporous
Materials 416
15 11 1 Thin Film 417
15 11 2 Fiber and Rod 417
15 11 3 Monolith 417
15 12 Mesoporous Nanomaterials 417
15 12 1 Silica-Based Mesoporous
Nanomaterials 417
15 12 2 Mesoporous Carbon
Nanomaterials 420
15 12 3 Mesoporous Metal
Oxide
Nanomaterials 420
15 13 Porous Carbon Materials 421
15 13 1 Microporous
Carbons 422
15 13 2 Mesoporous Carbon
Materials 422
15 14 Challenges for Porous Material
Scientist 423
References 424
16 2 4 Potential Applications of
CNTs 441
16 2 5 Conclusion and
Perspectives 441
16 3 Two-Dimensional Carbon: Graphene-
Based Materials 442
16 3 1 Introduction 442
16 3 2 Preparation of
Graphene 444
16 3 3 Chemical Functionalization
of Pristine Graphene 448
16 3 4 Applications of
Graphene 452
16 3 5 Future Perspectives 452
16 4 2D Carbon: Graphdiyne and
Graphyne-Based Materials 452
16 4 1 Introduction 452
16 4 2 Experimental Efforts
to Synthesize
Graphdiyne 453
16 4 3 Potential Application of
Graphdiyne and
Graphynes 453
16 4 4 Future Perspectives 456
References 456
17 Advanced Ceramic Materials 463
J -K Guo, J Li, H -M Kou
17 1 Nanoceramics 463
17 1 1 Preparation of Nanoscaled
Powders 463
17 1 2 Sintering of
Nanoceramics 466
17 2 Ceramic Matrix Composites
(CMCs) 469
17 2 1 Fiber-Reinforced Ceramic
Matrix Composites 469
17 2 2 Whisker-Reinforced
Ceramic Matrix
Composites 473
17 2 3 Particle Dispersion-
Strengthened
Ceramic Matrix
Composites 473
17 2 4 In Situ Growth Ceramic
Matrix Composites 475
17 2 5 Ceramic
Nanocomposites 476
Integration of Structures and
Functions 476
17 3 1 CNTs/Si02
Composites 476
17 3 2 CNTs/BaTi03
Composites 476
Carbon Materials 429
S -X Xiao, C -S Huang, Y -L Li
16 1 Zero-Dimensional Carbon: Fullerene-
Based Materials 429
16 1 1 Chemical Functionalization
of Pristine Fullerenes 430
16 1 2 Endohedral Fullerenes 433
16 1 3 Heterofullerenes 435
16 1 4 Potential Application of
Fullerenes: PCBM-Polymer
Systems for Solar Energy
Conversion 435
16 2 One-Dimensional Carbon: Carbon
Nanotubes 436 17 3
16 2 1 The History and Definition
of CNTs 436
16 2 2 Synthesis of CNTs 436
16 2 3 Exciting Properties of
CNTs 439
xiv Contents
17 4 Transparent Ceramics 478
17 4 1 Optical Ceramic for
Windows 478
17 4 2 Laser Ceramics 481
17 4 3 Upconversion Nanoparticles
and Ceramics 484
17 4 4 Ceramic Scintillators 485
References 487
18 Functional Host—Guest
Materials 493
Assembly Chemistry of Anion-Intercalated
Layered Materials 493
X Duan, J Lu, D G Evans
Introduction 493
18 1 Structure of Anion-Intercalated
Layered Materials 494
18 1 1 Introduction to Layered
Double Hydroxides 494
18 1 2 Structure of LDHs 494
18 1 3 Metal Ions in LDH
Layers 495
18 1 4 Interlayer Anions of
LDHs 497
18 2 Preparative Chemistry of Anion-
Intercalated Layered Materials 498
18 2 1 Methods of Preparation of
LDHs 498
18 2 2 Control of the Chemical
Composition of LDHs 502
18 2 3 Control of Mesomorphology
of LDHs 504
18 2 4 Control of the
Macromorphology of
LDHs 504
18 2 5 Fabrication of LDH
Films 507
18 3 Assembly Chemistry of Anion-
Intercalated Layered Materials 512
18 3 1 Intercalation—Assembly
Concepts 512
18 3 2 LDHs as Molecular
Containers, Reactors, and 2D
Interaction Space 513
18 3 3 Summary 517
References 517
Assembly Chemistry of Porous Host—Guest
Materials 524
X Wei, J -S Chen
18 4 Metal Clusters in Zeolites 524
18 4 1 Alkali Metal Clusters
Encapsulated Within
Zeolites 524
18 4 2 Noble Metal Clusters
Encapsulated Within Porous
Host 526
18 4 3 Transition Metal Clusters
Encapsulated Within Porous
Host 526
18 5 Semiconductor Nanoparticles in
Porous Materials 527
18 6 Carbonaceous Materials in Porous
Materials 529
18 6 1 Preparation of Carbonaceous
Materials in Porous
Supports 529
18 6 2 Fullerenes in Micro-/
Mesoporous Molecular
Sieves 529
18 6 3 Carbon Nanotubes Grown
in Porous Materials 530
18 7 Polymers in Porous Matrix 532
18 7 1 Polymers in Microporous
Zeolites 532
18 7 2 Polymerization in
Mesoporous Materials 532
18 7 3 Polymerization in Porous
Coordination Polymers 533
18 8 Metal Complexes Assembled Inside
Porous Materials 533
18 8 1 Incorporation of Metal-
Pyridine Ligand
Complexes 534
18 8 2 Incorporation of Metal—
Schiff Base Ligand
Complexes 535
18 8 3 Incorporation of Porphyrin
and Phthalocyanine
Complexes 536
18 8 4 Encapsulation of Other Metal
Complexes 537
18 9 Functional Compounds in Porous
Host 538
18 9 1 Encapsulation of Dyes in
Porous Host 538
18 9 2 Fluorescent Species in Porous
Host 540
18 9 3 Porous Host for Drug
Delivery 540
References 541
19 Hierarchical Materials 545
Y Xu
19 1 Introduction to Hierarchical
Materials 545
19 1 1 Innovation Inspired by
Nature 545
Contents xv
19 1 2 Definition of Hierarchical
Materials 545
19 1 3 Synthesis of Hierarchical
Materials: From Art to
Function-Led Design 546
19 2 Synthetic Strategies for Hierarchical
Materials 547
19 2 1 Templating Strategy 547
19 2 2 Self-Formation Strategy 557
19 2 3 Bioinspired Strategy 560
19 2 4 Biomimetic Strategy 568
19 3 Concluding Remarks 570
References 571
20 Functional Crystals 575
N Ye, J -Y Wang, R L Boughton, M -C Hong
20 1 Introduction 575
20 1 1 Natural and Synthetic
Crystals 575
20 1 2 Classification and
Applications of Functional
Crystals 576
20 2 Fundamentals of Crystal Growth
576
20 2 1 Phases and Phase
Diagrams 576
20 2 2 Driving Force in Crystal
Growth 579
20 2 3 Nucleation 579
20 2 4 Interface of Crystal
Growth 581
20 2 5 Transport During Crystal
Growth 583
20 3 Crystal Growth Technology 585
20 3 1 Classification of Crystal
Growth Methods 585
20 3 2 Crystal Growth from
Vapor 586
20 3 3 Solution Growth 587
20 3 4 Flux Growth 589
20 3 5 Melt Growth 590
20 4 Some Important Functional
Crystals 594
20 4 1 Laser Crystals 594
20 4 2 Nonlinear Optical
Crystals 597
20 4 3 Electro-Optical Crystals 600
20 4 4 Scintillation Crystals 602
20 4 5 Relaxor Ferroelectric Single
Crystals 603
20 4 6 Substrate Crystals 604
20 5 Discussion and Conclusion 608
References 610
21 Synthetic Chemistry of
Nanomaterials 613
S -Z Qiao, J Liu, G Q Max Lu
21 1 Basics of the Synthetic Chemistry of
Nanomaterials 613
21 2 Synthetic Method for
Nanomaterials 614
21 2 1 Top-Down Methods 614
21 2 2 Bottom-Up Methods 617
21 2 3 Special Synthetic Method
for Nanomaterials 623
21 3 Synthesis of Nanomaterials 624
21 3 1 Gold and Silver
Nanocrystals 624
21 3 2 Magnetic
Nanoparticles 625
21 3 3 Semiconductor Nanowires
and Ultrathin
Nanowires 626
21 3 4 Single Nanocrystals With a
Large Percentage of
Reactive or High-Energy
Facets 628
21 3 5 Hollow Porous
Nanostructures 629
21 3 6 Silica-Coated Core—Shell
Nanostructures 634
21 4 Concluding Remarks 636
References 636
22 Amorphous Materials 641
Z -Q Hu, A -M Wang, H -F Zhang
22 1 Amorphous Structure 641
22 1 1 Morphology of
Noncrystal 641
22 1 2 Long-Range Disorder of
Noncrystal 642
22 1 3 Molecular Dynamics
Computer Simulation 643
22 2 Formation Rule of Amorphous
Alloy 645
22 2 1 Principles for Formation of Amorphous Alloy 645
22 2 2 Semiempirical Criteria of Metallic Glass
Formation 648
22 2 3 Criterion of Thermodynamic Tq Curve 651
22 3 Preparation Technology of
Amorphous Materials 653
22 3 1 Melt Quenching 653
22 3 2 Atomization 654
22 3 3 Laserglazing 655
xvi Contents
22 3 4 Emulsion Droplet
Method 656
22 3 5 Mechanic Method 657
22 3 6 Solid-State Reaction
Method 658
22 3 7 Radiation Method 659
22 4 Bulk Amorphous Alloy and
Amorphous Alloy-Based Composite
Materials 661
22 4 1 Bulk Amorphous Alloys 661
22 4 2 Bulk Amorphous Alloy
Matrix Composites 663
References 666
23 Preparation Chemistry of Inorganic
Membranes 669
X -L Ma, J Y -S Lin
23 1 Inorganic Membranes and Their
Major Characteristics 669
23 2 Synthesis of Amorphous Microporous
Inorganic Membranes 670
23 2 1 Silica Membranes With
Improved Stability and
Controllable Pore Size 670
23 2 2 Thin Carbon Molecular Sieve
Membranes 671
23 3 Synthesis of Crystalline Microporous
Inorganic Membranes 674
23 3 1 Zeolite Membranes With
Minimized Intercrystalline
Defects 674
23 3 2 MOF Membranes 679
23 3 3 Nanosheet-Packed Molecular
Sieve Membranes 681
23 4 Conclusions 684
Acknowledgments 685
References 685
24 Frontier of Inorganic Synthesis
and Preparative Chemistry (I)
Biomimetic Synthesis 687
K -S Liu, D -L Tian, L Jiang
24 1 Introduction 687
24 2 Biomineralization and Its Mimetic
Inorganic Materials 687
24 2 1 Introduction 687
24 2 2 Biomineralization 689
24 2 3 Diatoms and Their Mimetic
Mineralization
Materials 690
24 2 4 Nacre and Its Mimetic
Mineralization
Materials 692
24 3 Biotemplated Inorganic
Materials 695
24 3 1 Introduction 695
24 3 2 DNA 695
24 3 3 Bacteria 699
24 3 4 Insect Wings 700
24 3 5 Shell Membranes 702
24 3 6 Other Typical
Biotemplates 702
24 4 Biomimetic Synthesis of Inorganic
Chiral Materials 702
24 4 1 Introduction 702
24 4 2 Zeolites and Molecular
Sieves 702
24 4 3 Si02 704
24 4 4 Metals 705
24 4 5 Others 706
24 5 Bioinspired Multiscale Inorganic
Materials 706
24 5 1 Introduction 706
24 5 2 Bioinspired Surfaces With
Special Wettability 707
24 5 3 Biomimetic Hollow
Micronanomaterials 710
24 5 4 High-Performance
Organic—Inorganic Compo-
sites Inspired by Nacre 710
24 5 5 Others 712
References 713
25 Frontier of Inorganic Synthesis and
Preparative Chemistry (ll)-Designed
Synthesis—Inorganic Crystalline
Porous Materials 723
J -H Yu, J -Y Li
25 1 Structure Design of Inorganic
Crystalline Porous Materials 724
25 1 1 Design of Zeolite Structures
With Predefined Pore
Geometries 724
25 1 2 Structure Design With
Predefined Structural Build-
ing Units and Double-Layer
Silica Sheets 728
25 2 Evaluation of Chemical Feasibility of
Zeolite Structures 736
25 2 1 Predicting Structural
Feasibility of Pure-Silica
Zeolites 736
25 2 2 Predicting Structural
Feasibility of Silica and
Germania Zeolites 738
25 2 3 Flexibility as an Indicator of
Feasibility of Zeolite
Frameworks 740
Contents xvii
25 2 4 Criteria for Feasible Zeolite
Frameworks for Target
Synthesis 740
25 3 Attempts to the Rational Synthesis of
Inorganic Porous Crystalline
Materials 742
25 3 1 Synthesis Guided by the
Structure-Directing Effect of
Template 743
25 3 2 Synthesis Guided by
Substituent Element
Effects 749
25 3 3 Synthesis Guided by Data
Mining 753
25 4 Synthesis Guided by Topotactic
Transformation 756
25 5 Future Perspectives on the Tailor-
Made Synthesis of Desired Inorganic
Porous Crystalline Materials 758
25 6 Concluding Remarks 759
References 759
Index 763
|
any_adam_object | 1 |
author2 | Xu, Ruren Xu, Yan |
author2_role | edt edt |
author2_variant | r x rx y x yx |
author_GND | (DE-588)1128445379 (DE-588)1128445859 |
author_facet | Xu, Ruren Xu, Yan |
building | Verbundindex |
bvnumber | BV044213802 |
classification_rvk | VH 5500 |
classification_tum | CHE 302f CHE 340f |
ctrlnum | (OCoLC)979536284 (DE-599)BVBBV044213802 |
dewey-full | 541.39 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.39 |
dewey-search | 541.39 |
dewey-sort | 3541.39 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Chemie |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01835nam a2200457 c 4500</leader><controlfield tag="001">BV044213802</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211122 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170307s2017 a||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444635914</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-0-444-63591-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)979536284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044213802</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.39</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VH 5500</subfield><subfield code="0">(DE-625)147263:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 302f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 340f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern inorganic synthetic chemistry</subfield><subfield code="c">edited by Ruren Xu and Yan Xu (Jilin University, Changchun, China)</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam ; Kidlington ; Cambridge, MA</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxii, 785 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anorganische Synthese</subfield><subfield code="0">(DE-588)4068736-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metallorganische Verbindungen</subfield><subfield code="0">(DE-588)4038906-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Synthese</subfield><subfield code="0">(DE-588)4133806-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Inorganic compounds / Synthesis</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Anorganische Synthese</subfield><subfield code="0">(DE-588)4068736-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Metallorganische Verbindungen</subfield><subfield code="0">(DE-588)4038906-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Chemische Synthese</subfield><subfield code="0">(DE-588)4133806-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Ruren</subfield><subfield code="0">(DE-588)1128445379</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yan</subfield><subfield code="0">(DE-588)1128445859</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029619978&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029619978</subfield></datafield></record></collection> |
id | DE-604.BV044213802 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:46:47Z |
institution | BVB |
isbn | 9780444635914 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029619978 |
oclc_num | 979536284 |
open_access_boolean | |
owner | DE-11 DE-703 DE-19 DE-BY-UBM |
owner_facet | DE-11 DE-703 DE-19 DE-BY-UBM |
physical | xxii, 785 Seiten Illustrationen, Diagramme (teilweise farbig) |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Elsevier |
record_format | marc |
spelling | Modern inorganic synthetic chemistry edited by Ruren Xu and Yan Xu (Jilin University, Changchun, China) Second edition Amsterdam ; Kidlington ; Cambridge, MA Elsevier [2017] © 2017 xxii, 785 Seiten Illustrationen, Diagramme (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier Anorganische Synthese (DE-588)4068736-3 gnd rswk-swf Metallorganische Verbindungen (DE-588)4038906-6 gnd rswk-swf Chemische Synthese (DE-588)4133806-6 gnd rswk-swf Inorganic compounds / Synthesis Anorganische Synthese (DE-588)4068736-3 s DE-604 Metallorganische Verbindungen (DE-588)4038906-6 s Chemische Synthese (DE-588)4133806-6 s Xu, Ruren (DE-588)1128445379 edt Xu, Yan (DE-588)1128445859 edt HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029619978&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Modern inorganic synthetic chemistry Anorganische Synthese (DE-588)4068736-3 gnd Metallorganische Verbindungen (DE-588)4038906-6 gnd Chemische Synthese (DE-588)4133806-6 gnd |
subject_GND | (DE-588)4068736-3 (DE-588)4038906-6 (DE-588)4133806-6 |
title | Modern inorganic synthetic chemistry |
title_auth | Modern inorganic synthetic chemistry |
title_exact_search | Modern inorganic synthetic chemistry |
title_full | Modern inorganic synthetic chemistry edited by Ruren Xu and Yan Xu (Jilin University, Changchun, China) |
title_fullStr | Modern inorganic synthetic chemistry edited by Ruren Xu and Yan Xu (Jilin University, Changchun, China) |
title_full_unstemmed | Modern inorganic synthetic chemistry edited by Ruren Xu and Yan Xu (Jilin University, Changchun, China) |
title_short | Modern inorganic synthetic chemistry |
title_sort | modern inorganic synthetic chemistry |
topic | Anorganische Synthese (DE-588)4068736-3 gnd Metallorganische Verbindungen (DE-588)4038906-6 gnd Chemische Synthese (DE-588)4133806-6 gnd |
topic_facet | Anorganische Synthese Metallorganische Verbindungen Chemische Synthese |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029619978&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT xururen moderninorganicsyntheticchemistry AT xuyan moderninorganicsyntheticchemistry |