Positive operator semigroups: from finite to infinite dimensions
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Birkhäuser
[2017]
|
Schriftenreihe: | Operator theory
volume 257 |
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XVIII, 364 Seiten) |
ISBN: | 9783319428130 |
ISSN: | 0255-0156 |
DOI: | 10.1007/978-3-319-42813-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044206298 | ||
003 | DE-604 | ||
005 | 20220209 | ||
007 | cr|uuu---uuuuu | ||
008 | 170302s2017 |||| o||u| ||||||eng d | ||
020 | |a 9783319428130 |c Online |9 978-3-319-42813-0 | ||
024 | 7 | |a 10.1007/978-3-319-42813-0 |2 doi | |
035 | |a (OCoLC)975047635 | ||
035 | |a (DE-599)BVBBV044206298 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-523 |a DE-703 |a DE-863 |a DE-20 |a DE-739 |a DE-634 |a DE-862 |a DE-824 |a DE-188 | ||
082 | 0 | |a 515.724 |2 23 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bátkai, András |d 1972- |e Verfasser |0 (DE-588)122197348 |4 aut | |
245 | 1 | 0 | |a Positive operator semigroups |b from finite to infinite dimensions |c András Bátkai, Marjeta Kramar Fijavž, Abdelaziz Rhandi |
264 | 1 | |a Cham |b Birkhäuser |c [2017] | |
300 | |a 1 Online-Ressource (XVIII, 364 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Operator theory |v volume 257 |x 0255-0156 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Matrix theory | |
650 | 4 | |a Algebra | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Linear and Multilinear Algebras, Matrix Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Operatorhalbgruppe |0 (DE-588)4172620-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Operatorhalbgruppe |0 (DE-588)4172620-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kramar Fijavž, Marjeta |e Verfasser |4 aut | |
700 | 1 | |a Rhandi, Abdelaziz |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-42811-6 |
810 | 2 | |a Operator Theory |t Advances and Applications |v 257 |w (DE-604)BV035421307 |9 257 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-42813-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2017 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029612692 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-42813-0 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 639292 |
---|---|
_version_ | 1806180890164854784 |
any_adam_object | |
author | Bátkai, András 1972- Kramar Fijavž, Marjeta Rhandi, Abdelaziz |
author_GND | (DE-588)122197348 |
author_facet | Bátkai, András 1972- Kramar Fijavž, Marjeta Rhandi, Abdelaziz |
author_role | aut aut aut |
author_sort | Bátkai, András 1972- |
author_variant | a b ab f m k fm fmk a r ar |
building | Verbundindex |
bvnumber | BV044206298 |
classification_rvk | SK 620 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)975047635 (DE-599)BVBBV044206298 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-42813-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03048nmm a2200661zcb4500</leader><controlfield tag="001">BV044206298</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220209 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170302s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319428130</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-42813-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-42813-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)975047635</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044206298</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bátkai, András</subfield><subfield code="d">1972-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122197348</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Positive operator semigroups</subfield><subfield code="b">from finite to infinite dimensions</subfield><subfield code="c">András Bátkai, Marjeta Kramar Fijavž, Abdelaziz Rhandi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 364 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator theory</subfield><subfield code="v">volume 257</subfield><subfield code="x">0255-0156</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear and Multilinear Algebras, Matrix Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorhalbgruppe</subfield><subfield code="0">(DE-588)4172620-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operatorhalbgruppe</subfield><subfield code="0">(DE-588)4172620-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kramar Fijavž, Marjeta</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rhandi, Abdelaziz</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-42811-6</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Operator Theory</subfield><subfield code="t">Advances and Applications</subfield><subfield code="v">257</subfield><subfield code="w">(DE-604)BV035421307</subfield><subfield code="9">257</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2017</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029612692</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-42813-0</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044206298 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T12:32:05Z |
institution | BVB |
isbn | 9783319428130 |
issn | 0255-0156 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029612692 |
oclc_num | 975047635 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-188 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-188 |
physical | 1 Online-Ressource (XVIII, 364 Seiten) |
psigel | ZDB-2-SMA ZDB-2-SMA_2017 |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Birkhäuser |
record_format | marc |
series2 | Operator theory |
spellingShingle | Bátkai, András 1972- Kramar Fijavž, Marjeta Rhandi, Abdelaziz Positive operator semigroups from finite to infinite dimensions Mathematics Matrix theory Algebra Operator theory Operator Theory Linear and Multilinear Algebras, Matrix Theory Mathematik Operatorhalbgruppe (DE-588)4172620-0 gnd |
subject_GND | (DE-588)4172620-0 |
title | Positive operator semigroups from finite to infinite dimensions |
title_auth | Positive operator semigroups from finite to infinite dimensions |
title_exact_search | Positive operator semigroups from finite to infinite dimensions |
title_full | Positive operator semigroups from finite to infinite dimensions András Bátkai, Marjeta Kramar Fijavž, Abdelaziz Rhandi |
title_fullStr | Positive operator semigroups from finite to infinite dimensions András Bátkai, Marjeta Kramar Fijavž, Abdelaziz Rhandi |
title_full_unstemmed | Positive operator semigroups from finite to infinite dimensions András Bátkai, Marjeta Kramar Fijavž, Abdelaziz Rhandi |
title_short | Positive operator semigroups |
title_sort | positive operator semigroups from finite to infinite dimensions |
title_sub | from finite to infinite dimensions |
topic | Mathematics Matrix theory Algebra Operator theory Operator Theory Linear and Multilinear Algebras, Matrix Theory Mathematik Operatorhalbgruppe (DE-588)4172620-0 gnd |
topic_facet | Mathematics Matrix theory Algebra Operator theory Operator Theory Linear and Multilinear Algebras, Matrix Theory Mathematik Operatorhalbgruppe |
url | https://doi.org/10.1007/978-3-319-42813-0 |
volume_link | (DE-604)BV035421307 |
work_keys_str_mv | AT batkaiandras positiveoperatorsemigroupsfromfinitetoinfinitedimensions AT kramarfijavzmarjeta positiveoperatorsemigroupsfromfinitetoinfinitedimensions AT rhandiabdelaziz positiveoperatorsemigroupsfromfinitetoinfinitedimensions |