Pricing derivatives under Lévy models: modern finite-difference and pseudo-differential operators approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Birkhäuser
[2017]
|
Schriftenreihe: | Pseudo-differential operators, theory and applications
vol. 12 |
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext Inhaltsverzeichnis |
Beschreibung: | 1 Online-Ressource (XX, 308 Seiten, 64 illus., 62 illus. in color) |
ISBN: | 9781493967926 |
ISSN: | 2297-0355 |
DOI: | 10.1007/978-1-4939-6792-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044206010 | ||
003 | DE-604 | ||
005 | 20220209 | ||
007 | cr|uuu---uuuuu | ||
008 | 170302s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781493967926 |c Online |9 978-1-4939-6792-6 | ||
024 | 7 | |a 10.1007/978-1-4939-6792-6 |2 doi | |
035 | |a (OCoLC)975197442 | ||
035 | |a (DE-599)BVBBV044206010 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-523 |a DE-703 |a DE-863 |a DE-20 |a DE-739 |a DE-634 |a DE-862 |a DE-824 |a DE-188 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Itkin, Andrey |e Verfasser |4 aut | |
245 | 1 | 0 | |a Pricing derivatives under Lévy models |b modern finite-difference and pseudo-differential operators approach |c Andrey Itkin |
264 | 1 | |a New York, NY |b Birkhäuser |c [2017] | |
300 | |a 1 Online-Ressource (XX, 308 Seiten, 64 illus., 62 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pseudo-differential operators, theory and applications |v vol. 12 |x 2297-0355 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Economics, Mathematical | |
650 | 4 | |a Computer mathematics | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Quantitative Finance | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Computational Science and Engineering | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematisches Modell | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4939-6790-2 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4939-6792-6 |x Verlag |3 Volltext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029612404&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2017 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029612404 | ||
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4939-6792-6 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 639072 |
---|---|
_version_ | 1806180825766559744 |
adam_text | Titel: Pricing Derivatives Under Lévy Models
Autor: Itkin, Andrey
Jahr: 2017
Part I Modern Tools of Computational Finance
1 Basics of the Finite Difference Method.......................................... 3
1.1 Finite Difference Approximation of Derivatives........................... 3
1.1.1 Construction of Finite Differences................................ 4
1.1.2 Higher-Order Approximations.................................... 5
1.1.3 Higher-Order Derivatives ......................................... 7
1.1.4 Mixed Derivatives................................................. 8
1.2 Finite Difference Method for Solving PDEs............................... 10
1.3 Stability Analysis............................................................ 14
References........................................................................... 19
2 Modern Finite Difference Approach ............................................ 21
2.1 Introduction.................................................................. 21
2.2 Discretization of eAz^ on a Temporal Grid ............................... 24
2.2.1 Examples........................................................... 24
2.3 Discretization of the Operator Jzf on a Spatial Grid ...................... 26
2.3.1 Uniform Grid ...................................................... 26
2.3.2 Nonuniform Grid.................................................. 27
2.4 Requirements of Modern FD Scheines..................................... 34
2.4.1 Order of Approximation........................................... 34
2.4.2 Stability......................,..................................... 36
2.4.3 Nonnegativity ofthe Solution..................................... 38
2.4.4 Complexity......................................................... 40
2.5 Operator Splitting Technique............................................... 41
2.5.1 General Approach................................................. 41
2.5.2 Splitting for a Convection-Diffusion PDE ...................... 46
2.A Appendix: Examples of Some HOC Scheines for Pricing
American Options........................................................... 48
2.A. I Finite Difference Scheme......................................... 50
2.A.2 Higher-Order FD Scheines in Time............................... 52
xv
xv i Contents
2.A.3 L-Stabie Scheine of Fifth Order in Time......................... 54
2.A.4 Boundary Conditions for a High-Order Uniform FD Scheine... 55
References........................................................................... 56
3 An M-Matrix Theory and FD.................................................... 59
3.1 M-Matrices and Metzler Matrices ......................................... 60
3.2 The Operator Jt? as a Generator............................................ 63
3.3 EM-Matrices................................................................. 65
3.3.1 Some Useful Theorems............................................ 66
3.4 Mixed Derivatives and Positivity .......................................... 68
3.4.1 Rate of Convergence of Picard Iterations......................... 75
3.4.2 Second Order of Approximation in Space........................ 76
References........................................................................... 81
Part II Pricing Derivatives Using Levy Processes
4 A Brief Introduction to Levy Processes......................................... 85
4.1 Preliminaries................................................................. 85
4.2 Main Definitions ............................................................ 86
4.3 Levy-Khinchin Formula.................................................... 89
4.4 Levy Measure, Path. and Moments......................................... 92
4.5 Semimartingales and Ito s Lemma......................................... 95
4.6 PIDE for Pricing European Options........................................ 98
References........................................................................... 100
5 Pseudoparabolic and Fractional Equations of Option Pricing............... 101
5.1 Introduction.................................................................. 101
5.2 Levy Models and Backward PIDE......................................... 105
5.3 From PIDE to PDE: A Basic Example..................................... 106
5.4 A More Sophisticated Example: The GTSP Model....................... 109
5.4.1 Transforming a PIDE to a Pseudoparabolic Equation ........... 112
5.5 Solution ofthe Pseudoparabolic Equation................................. 115
5.5.1 Numerical Method When a € I.a 0........................... 116
5.5.2 a e R: Interpolation............................................... 119
5.5.3 Numerical Examples .............................................. 120
5.5.4 TheCaseo^ = 0oraL = 0....................................... 126
5.6 Jump Integral as a Pseudodifferential Operator............................ 130
References........................................................................... 132
6 Pseudoparabolic Equations for Various Levy Models......................... 135
6.1 Introduction.................................................................. 135
6.2 Solution of aPure Jump Equation.......................................... 138
Contents xvü
6.3 Merton Model............................................................... 14!
6.4 Exponential Jumps.......................................................... 143
6.5 Kou Model .................................................................. 145
6.5.1 Numerical Experiments........................................... 146
6.6 CGMY Model............................................................... 148
6.6.1 The Gase aR 0................................................... 151
6.6.2 TheCaseO aR 1.............................................. 153
6.6.3 The Case aR = 1 .................................................. 154
6.6.4 The Case 1 aR 2.............................................. 155
6.6.5 Approximations of Jä?L............................................ 158
6.7 Other Numerical Experiments.............................................. 159
6.8 Pure Jump Models........................................................... 161
6.8.1 Normal Inverse Gaussian Model (NIG).......................... 163
6.8.2 Generalized Hyperbolic Models.................................. 167
6.8.3 Meixner Model .................................................... 175
References........................................................................... 179
7 High-Order Splitting Methods for Forward PDEs and PIDEs............... 183
7.1 Introduction.................................................................. 183
7.2 LSV Model with Jumps..................................................... J 85
7.3 Backward and Forward FD Scheme for the Diffusion Part............... 187
7.3.1 Backward Scheme................................................. 187
7.3.2 Forward Scheme................................................... 188
7.4 Forward Scheme for Jumps................................................. 191
7.4.1 Details of Numerical Implementation............................ 192
7.4.2 Parameters of the Finite Difference Scheme..................... 196
7.5 Construction of the Backward and Forward Evolution Operators........ 199
References........................................................................... 201
Part III 2D and 3D Cases and Correlated Jumps
8 Multidimensional Structural Default Models
and Correlated Jumps............................................................ 205
8.1 Introduction.................................................................. 205
8.2 Interbank Mutual Obligations in a Structural Default Model............. 208
8.3 Correlated Jumps and Structured Default Models......................... 213
8.4 Pseudodifferential Equations and Jump Integrals.......................... 215
8.5 Construction of an FD scheme.............................................. 217
8.6 Benchmark: 1D Structural Default Model with Exponential
Jumps........................................................................ 222
8.6.1 A Generalized Fourier-LapJace Transform Approach........... 223
8.6.2 Inversion ofthe Laplace Transform: No Jumps.................. 225
xviü Contents
8.7 Numerical Experiments..................................................... 228
8.7.1 The One-Dimensional Problem................................... 228
8.7.2 The Two-Dirnensional Problem................................... 230
8.8 The Three-Dimensional Case............................................... 235
8.8.1 Numerical Experiments........................................... 240
References........................................................................... 243
9 LSV Models with Stochastic Interest Rates and Correlated Jumps......... 247
9.1 Introduction.................................................................. 247
9.2 Model........................................................................ 249
9.3 Solution of the PIDE........................................................ 252
9.3.1 Idiosyncratic Jumps ............................................... 252
9.3.2 Common Jumps.................................................... 253
9.4 Numerical Experiments..................................................... 255
References........................................................................... 263
10 Stochastic Skew Model............................................................ 265
10.1 Introduction.................................................................. 265
10.2 Pricing Barrier Options under SSM........................................ 267
10.3 A Sufficient Condition for the Matrix of Second Derivatives
to Be Positive Semidefmite................................................. 270
10.4 Splitting Method ............................................................ 272
10.4.1 Structure of the Numerical Algorithm............................ 276
10.5 Numerical Experiments..................................................... 279
10.5.1 Test 1............................................................... 281
10.5.2 Test 2............................................................... 283
10.5.3 Test 3............................................................... 284
References........................................................................... 295
Giossary.................................................................................. 297
References........................................................................... 302
Index...................................................................................... 305
|
any_adam_object | 1 |
author | Itkin, Andrey |
author_facet | Itkin, Andrey |
author_role | aut |
author_sort | Itkin, Andrey |
author_variant | a i ai |
building | Verbundindex |
bvnumber | BV044206010 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)975197442 (DE-599)BVBBV044206010 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4939-6792-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03160nmm a2200637zcb4500</leader><controlfield tag="001">BV044206010</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220209 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170302s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781493967926</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4939-6792-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4939-6792-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)975197442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044206010</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Itkin, Andrey</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pricing derivatives under Lévy models</subfield><subfield code="b">modern finite-difference and pseudo-differential operators approach</subfield><subfield code="c">Andrey Itkin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 308 Seiten, 64 illus., 62 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pseudo-differential operators, theory and applications</subfield><subfield code="v">vol. 12</subfield><subfield code="x">2297-0355</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics, Mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative Finance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Science and Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4939-6790-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029612404&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2017</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029612404</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-6792-6</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044206010 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T12:31:03Z |
institution | BVB |
isbn | 9781493967926 |
issn | 2297-0355 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029612404 |
oclc_num | 975197442 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-188 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-188 |
physical | 1 Online-Ressource (XX, 308 Seiten, 64 illus., 62 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-SMA_2017 |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Birkhäuser |
record_format | marc |
series2 | Pseudo-differential operators, theory and applications |
spellingShingle | Itkin, Andrey Pricing derivatives under Lévy models modern finite-difference and pseudo-differential operators approach Mathematics Partial differential equations Economics, Mathematical Computer mathematics Mathematical models Quantitative Finance Mathematical Modeling and Industrial Mathematics Computational Science and Engineering Partial Differential Equations Mathematik Mathematisches Modell |
title | Pricing derivatives under Lévy models modern finite-difference and pseudo-differential operators approach |
title_auth | Pricing derivatives under Lévy models modern finite-difference and pseudo-differential operators approach |
title_exact_search | Pricing derivatives under Lévy models modern finite-difference and pseudo-differential operators approach |
title_full | Pricing derivatives under Lévy models modern finite-difference and pseudo-differential operators approach Andrey Itkin |
title_fullStr | Pricing derivatives under Lévy models modern finite-difference and pseudo-differential operators approach Andrey Itkin |
title_full_unstemmed | Pricing derivatives under Lévy models modern finite-difference and pseudo-differential operators approach Andrey Itkin |
title_short | Pricing derivatives under Lévy models |
title_sort | pricing derivatives under levy models modern finite difference and pseudo differential operators approach |
title_sub | modern finite-difference and pseudo-differential operators approach |
topic | Mathematics Partial differential equations Economics, Mathematical Computer mathematics Mathematical models Quantitative Finance Mathematical Modeling and Industrial Mathematics Computational Science and Engineering Partial Differential Equations Mathematik Mathematisches Modell |
topic_facet | Mathematics Partial differential equations Economics, Mathematical Computer mathematics Mathematical models Quantitative Finance Mathematical Modeling and Industrial Mathematics Computational Science and Engineering Partial Differential Equations Mathematik Mathematisches Modell |
url | https://doi.org/10.1007/978-1-4939-6792-6 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029612404&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT itkinandrey pricingderivativesunderlevymodelsmodernfinitedifferenceandpseudodifferentialoperatorsapproach |