Generalized additive models: an introduction with R
The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary bac...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press, Taylor & Francis Group
[2017]
|
Ausgabe: | Second edition |
Schriftenreihe: | Texts in statistical science
|
Schlagworte: | |
Online-Zugang: | Klappentext |
Zusammenfassung: | The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. |
Beschreibung: | xx, 476 Seiten Diagramme |
ISBN: | 9781498728331 1498728332 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044202473 | ||
003 | DE-604 | ||
005 | 20240209 | ||
007 | t | ||
008 | 170228s2017 |||| |||| 00||| eng d | ||
020 | |a 9781498728331 |c hardback |9 978-1-4987-2833-1 | ||
020 | |a 1498728332 |9 1498728332 | ||
035 | |a (OCoLC)963922328 | ||
035 | |a (DE-599)BVBBV044202473 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-20 |a DE-83 |a DE-521 |a DE-739 |a DE-355 |a DE-11 |a DE-1028 |a DE-384 |a DE-188 | ||
050 | 0 | |a QA274.73 | |
084 | |a CM 2500 |0 (DE-625)18944: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MR 2100 |0 (DE-625)123488: |2 rvk | ||
084 | |a QH 200 |0 (DE-625)141539: |2 rvk | ||
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
084 | |a XC 3101 |0 (DE-625)152511:12907 |2 rvk | ||
084 | |a MAT 030f |2 stub | ||
100 | 1 | |a Wood, Simon N. |e Verfasser |0 (DE-588)1070265071 |4 aut | |
245 | 1 | 0 | |a Generalized additive models |b an introduction with R |c Simon N. Wood, University of Bristol, UK |
250 | |a Second edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press, Taylor & Francis Group |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xx, 476 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Texts in statistical science | |
520 | 3 | |a The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. | |
650 | 0 | 7 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regressionsanalyse |0 (DE-588)4129903-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verallgemeinertes lineares Modell |0 (DE-588)4124382-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineares Regressionsmodell |0 (DE-588)4127971-2 |2 gnd |9 rswk-swf |
653 | 0 | |a Random walks (Mathematics) | |
653 | 0 | |a Linear models (Statistics) | |
653 | 0 | |a R (Computer program language) | |
689 | 0 | 0 | |a Verallgemeinertes lineares Modell |0 (DE-588)4124382-1 |D s |
689 | 0 | 1 | |a Lineares Regressionsmodell |0 (DE-588)4127971-2 |D s |
689 | 0 | 2 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Regressionsanalyse |0 (DE-588)4129903-6 |D s |
689 | 1 | 1 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |D s |
689 | 1 | 2 | |a Verallgemeinertes lineares Modell |0 (DE-588)4124382-1 |D s |
689 | 1 | 3 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 2 | 1 | |a Verallgemeinertes lineares Modell |0 (DE-588)4124382-1 |D s |
689 | 2 | 2 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-498-72834-8 |w (DE-604)BV044349515 |
856 | 4 | 2 | |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029608996&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-029608996 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177338104020992 |
---|---|
adam_text | gibliothcksVerbund Kataloganreicherung von UB Augsburg K000325528 Bestell-Nr.: System-Nr.: BV-Nr.: K000325528 029608996 BV044202473 Bestelldatum: 05.03.2020 Titel: Generalized additive models Verfasser: Wood, Simon N. ISBN: 978-1-4987-2833-1 Ort: Boca Raton ; London ; New York Jahr: 2017 Anreicherungstyp: Klappentext Aufloesung: 300dpi (Standard) Farbe: s/w (Text) Zeichensatz: IS08859-1 Bearbeiter: TM Hinweise: Digitalisierung UB Augsburg - ADAM Catalogue Enrichment
Statistics The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discus sions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical ap plication of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. New to the Second Edition • • • • Mixed models are introduced much earlier in the book, in a new Chap ter 2 and alongside GLMs in Chapter 3. The range of smoothers covered is substantially enlarged to include adaptive smoothing, P֊splines with derivative penalties, Duchon splines, splines on the sphere, Gaussian process smoothers and more. The chapter on GAM theory has been substantially updated, includ ing recent improved methods for estimation and inference as well as methods for large data sets and models. Includes new examples covering topics such as survival modelling, location scale
modelling, functional data analysis, spatio-temporal modelling, Bayesian simulation, and more. Simon N. Wood is a professor of Statistical Science at the University of Bristol, UK, and author of the R package mgcv. K25925 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 ISBN: 47Ո֊1֊44Ճ7֊3033֊1 978149872833190000 711 Third Avenue New York, NY 10017 www.crcpress.com 2 Park Square, Milton Park Abingdon, Oxon OX14 4RN, UK www.crcpress.com
|
any_adam_object | 1 |
author | Wood, Simon N. |
author_GND | (DE-588)1070265071 |
author_facet | Wood, Simon N. |
author_role | aut |
author_sort | Wood, Simon N. |
author_variant | s n w sn snw |
building | Verbundindex |
bvnumber | BV044202473 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.73 |
callnumber-search | QA274.73 |
callnumber-sort | QA 3274.73 |
callnumber-subject | QA - Mathematics |
classification_rvk | CM 2500 SK 820 MR 2100 QH 200 QH 233 SK 840 ST 601 QH 237 XC 3101 |
classification_tum | MAT 030f |
ctrlnum | (OCoLC)963922328 (DE-599)BVBBV044202473 |
discipline | Informatik Soziologie Psychologie Mathematik Wirtschaftswissenschaften Medizin |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04285nam a2200757 c 4500</leader><controlfield tag="001">BV044202473</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240209 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170228s2017 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781498728331</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-4987-2833-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1498728332</subfield><subfield code="9">1498728332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)963922328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044202473</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.73</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 2500</subfield><subfield code="0">(DE-625)18944:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2100</subfield><subfield code="0">(DE-625)123488:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 200</subfield><subfield code="0">(DE-625)141539:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XC 3101</subfield><subfield code="0">(DE-625)152511:12907</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 030f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wood, Simon N.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1070265071</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized additive models</subfield><subfield code="b">an introduction with R</subfield><subfield code="c">Simon N. Wood, University of Bristol, UK</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xx, 476 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in statistical science</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verallgemeinertes lineares Modell</subfield><subfield code="0">(DE-588)4124382-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Regressionsmodell</subfield><subfield code="0">(DE-588)4127971-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Random walks (Mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Linear models (Statistics)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verallgemeinertes lineares Modell</subfield><subfield code="0">(DE-588)4124382-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineares Regressionsmodell</subfield><subfield code="0">(DE-588)4127971-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Verallgemeinertes lineares Modell</subfield><subfield code="0">(DE-588)4124382-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Verallgemeinertes lineares Modell</subfield><subfield code="0">(DE-588)4124382-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-498-72834-8</subfield><subfield code="w">(DE-604)BV044349515</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029608996&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029608996</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044202473 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:46:29Z |
institution | BVB |
isbn | 9781498728331 1498728332 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029608996 |
oclc_num | 963922328 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-20 DE-83 DE-521 DE-739 DE-355 DE-BY-UBR DE-11 DE-1028 DE-384 DE-188 |
owner_facet | DE-19 DE-BY-UBM DE-20 DE-83 DE-521 DE-739 DE-355 DE-BY-UBR DE-11 DE-1028 DE-384 DE-188 |
physical | xx, 476 Seiten Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
series2 | Texts in statistical science |
spelling | Wood, Simon N. Verfasser (DE-588)1070265071 aut Generalized additive models an introduction with R Simon N. Wood, University of Bristol, UK Second edition Boca Raton ; London ; New York CRC Press, Taylor & Francis Group [2017] © 2017 xx, 476 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Texts in statistical science The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. Irrfahrtsproblem (DE-588)4162442-7 gnd rswk-swf Regressionsanalyse (DE-588)4129903-6 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Verallgemeinertes lineares Modell (DE-588)4124382-1 gnd rswk-swf R Programm (DE-588)4705956-4 gnd rswk-swf Lineares Regressionsmodell (DE-588)4127971-2 gnd rswk-swf Random walks (Mathematics) Linear models (Statistics) R (Computer program language) Verallgemeinertes lineares Modell (DE-588)4124382-1 s Lineares Regressionsmodell (DE-588)4127971-2 s R Programm (DE-588)4705956-4 s DE-604 Regressionsanalyse (DE-588)4129903-6 s Irrfahrtsproblem (DE-588)4162442-7 s 1\p DE-604 Stochastischer Prozess (DE-588)4057630-9 s 2\p DE-604 Erscheint auch als Online-Ausgabe 978-1-498-72834-8 (DE-604)BV044349515 Digitalisierung UB Augsburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029608996&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wood, Simon N. Generalized additive models an introduction with R Irrfahrtsproblem (DE-588)4162442-7 gnd Regressionsanalyse (DE-588)4129903-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Verallgemeinertes lineares Modell (DE-588)4124382-1 gnd R Programm (DE-588)4705956-4 gnd Lineares Regressionsmodell (DE-588)4127971-2 gnd |
subject_GND | (DE-588)4162442-7 (DE-588)4129903-6 (DE-588)4057630-9 (DE-588)4124382-1 (DE-588)4705956-4 (DE-588)4127971-2 |
title | Generalized additive models an introduction with R |
title_auth | Generalized additive models an introduction with R |
title_exact_search | Generalized additive models an introduction with R |
title_full | Generalized additive models an introduction with R Simon N. Wood, University of Bristol, UK |
title_fullStr | Generalized additive models an introduction with R Simon N. Wood, University of Bristol, UK |
title_full_unstemmed | Generalized additive models an introduction with R Simon N. Wood, University of Bristol, UK |
title_short | Generalized additive models |
title_sort | generalized additive models an introduction with r |
title_sub | an introduction with R |
topic | Irrfahrtsproblem (DE-588)4162442-7 gnd Regressionsanalyse (DE-588)4129903-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Verallgemeinertes lineares Modell (DE-588)4124382-1 gnd R Programm (DE-588)4705956-4 gnd Lineares Regressionsmodell (DE-588)4127971-2 gnd |
topic_facet | Irrfahrtsproblem Regressionsanalyse Stochastischer Prozess Verallgemeinertes lineares Modell R Programm Lineares Regressionsmodell |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029608996&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT woodsimonn generalizedadditivemodelsanintroductionwithr |