An introduction to manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York ; Dordrecht ; Heidelberg ; London
Springer
[2011]
|
Ausgabe: | Second Edition |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | BTU01 UBA01 UBM01 UBT01 UBW01 Volltext |
Beschreibung: | 1 Online-Ressource (XVIII, 410 Seiten) Illustrationen, Diagramme |
ISBN: | 9781441974006 |
DOI: | 10.1007/978-1-4419-7400-6 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV044200975 | ||
003 | DE-604 | ||
005 | 20231011 | ||
007 | cr|uuu---uuuuu | ||
008 | 170227s2011 |||| o||u| ||||||eng d | ||
020 | |a 9781441974006 |c Online |9 978-1-4419-7400-6 | ||
024 | 7 | |a 10.1007/978-1-4419-7400-6 |2 doi | |
035 | |a (OCoLC)724838249 | ||
035 | |a (DE-599)BVBBV044200975 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-634 |a DE-703 |a DE-19 |a DE-83 |a DE-20 | ||
050 | 0 | |a QA 613 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Tu, Loring W. |d 1952- |e Verfasser |0 (DE-588)110090322 |4 aut | |
245 | 1 | 0 | |a An introduction to manifolds |c Loring W. Tu |
250 | |a Second Edition | ||
264 | 1 | |a New York ; Dordrecht ; Heidelberg ; London |b Springer |c [2011] | |
300 | |a 1 Online-Ressource (XVIII, 410 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext | |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialform |0 (DE-588)4149772-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tangentialraum |0 (DE-588)4792364-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorfeld |0 (DE-588)4139571-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Differentialform |0 (DE-588)4149772-7 |D s |
689 | 1 | 1 | |a Tangentialraum |0 (DE-588)4792364-7 |D s |
689 | 1 | 2 | |a Vektorfeld |0 (DE-588)4139571-2 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-441-97399-3 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-7400-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029607527 | ||
966 | e | |u https://doi.org/10.1007/978-1-4419-7400-6 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-7400-6 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-7400-6 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-7400-6 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-7400-6 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177335540252672 |
---|---|
any_adam_object | |
author | Tu, Loring W. 1952- |
author_GND | (DE-588)110090322 |
author_facet | Tu, Loring W. 1952- |
author_role | aut |
author_sort | Tu, Loring W. 1952- |
author_variant | l w t lw lwt |
building | Verbundindex |
bvnumber | BV044200975 |
callnumber-first | Q - Science |
callnumber-label | QA 613 |
callnumber-raw | QA 613 |
callnumber-search | QA 613 |
callnumber-sort | QA 3613 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 SK 350 SK 370 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)724838249 (DE-599)BVBBV044200975 |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4419-7400-6 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02552nmm a2200601 c 4500</leader><controlfield tag="001">BV044200975</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231011 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170227s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441974006</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4419-7400-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-7400-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)724838249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044200975</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA 613</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tu, Loring W.</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110090322</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to manifolds</subfield><subfield code="c">Loring W. Tu</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; Dordrecht ; Heidelberg ; London</subfield><subfield code="b">Springer</subfield><subfield code="c">[2011]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 410 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tangentialraum</subfield><subfield code="0">(DE-588)4792364-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Tangentialraum</subfield><subfield code="0">(DE-588)4792364-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-441-97399-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-7400-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029607527</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-7400-6</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-7400-6</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-7400-6</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-7400-6</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-7400-6</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV044200975 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:46:27Z |
institution | BVB |
isbn | 9781441974006 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029607527 |
oclc_num | 724838249 |
open_access_boolean | |
owner | DE-384 DE-634 DE-703 DE-19 DE-BY-UBM DE-83 DE-20 |
owner_facet | DE-384 DE-634 DE-703 DE-19 DE-BY-UBM DE-83 DE-20 |
physical | 1 Online-Ressource (XVIII, 410 Seiten) Illustrationen, Diagramme |
psigel | ZDB-2-SMA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Tu, Loring W. 1952- Verfasser (DE-588)110090322 aut An introduction to manifolds Loring W. Tu Second Edition New York ; Dordrecht ; Heidelberg ; London Springer [2011] 1 Online-Ressource (XVIII, 410 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Universitext Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd rswk-swf Differentialform (DE-588)4149772-7 gnd rswk-swf Tangentialraum (DE-588)4792364-7 gnd rswk-swf Vektorfeld (DE-588)4139571-2 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Mannigfaltigkeit (DE-588)4037379-4 s Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 s DE-604 Differentialform (DE-588)4149772-7 s Tangentialraum (DE-588)4792364-7 s Vektorfeld (DE-588)4139571-2 s Erscheint auch als Druck-Ausgabe 978-1-441-97399-3 https://doi.org/10.1007/978-1-4419-7400-6 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Tu, Loring W. 1952- An introduction to manifolds Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Differentialform (DE-588)4149772-7 gnd Tangentialraum (DE-588)4792364-7 gnd Vektorfeld (DE-588)4139571-2 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4012269-4 (DE-588)4149772-7 (DE-588)4792364-7 (DE-588)4139571-2 (DE-588)4037379-4 (DE-588)4123623-3 |
title | An introduction to manifolds |
title_auth | An introduction to manifolds |
title_exact_search | An introduction to manifolds |
title_full | An introduction to manifolds Loring W. Tu |
title_fullStr | An introduction to manifolds Loring W. Tu |
title_full_unstemmed | An introduction to manifolds Loring W. Tu |
title_short | An introduction to manifolds |
title_sort | an introduction to manifolds |
topic | Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Differentialform (DE-588)4149772-7 gnd Tangentialraum (DE-588)4792364-7 gnd Vektorfeld (DE-588)4139571-2 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Differenzierbare Mannigfaltigkeit Differentialform Tangentialraum Vektorfeld Mannigfaltigkeit Lehrbuch |
url | https://doi.org/10.1007/978-1-4419-7400-6 |
work_keys_str_mv | AT tuloringw anintroductiontomanifolds |