The endoscopic classification of representations orthogonal and symplectic groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2013]
|
Schriftenreihe: | American Mathematical Society Colloquium Publications
volume 61 |
Schlagworte: | |
Online-Zugang: | UBM01 Volltext |
Beschreibung: | 1 Online-Ressource (xviii, 590 Seiten) |
ISBN: | 9781470409692 |
DOI: | 10.1090/coll/061 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV044184494 | ||
003 | DE-604 | ||
005 | 20220516 | ||
007 | cr|uuu---uuuuu | ||
008 | 170220s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781470409692 |c Online |9 978-1-4704-0969-2 | ||
024 | 7 | |a 10.1090/coll/061 |2 doi | |
035 | |a (ZDB-138-AMQ)17689118 | ||
035 | |a (OCoLC)975227527 | ||
035 | |a (DE-599)BVBBV044184494 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-11 | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Arthur, James |d 1944- |e Verfasser |0 (DE-588)133218317 |4 aut | |
245 | 1 | 0 | |a The endoscopic classification of representations orthogonal and symplectic groups |c James Arthur |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2013] | |
264 | 4 | |c © 2013 | |
300 | |a 1 Online-Ressource (xviii, 590 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a American Mathematical Society Colloquium Publications |v volume 61 | |
650 | 7 | |a Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over global fields and ad ele rings |2 msc | |
650 | 7 | |a Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over local fields |2 msc | |
650 | 7 | |a Number theory / Algebraic number theory: global fields / Class field theory |2 msc | |
650 | 7 | |a Number theory / Discontinuous groups and automorphic forms / Langlands $L$-functions; one variable Dirichlet series and functional equations |2 msc | |
650 | 7 | |a Global analysis, analysis on manifolds / Calculus on manifolds; nonlinear operators / Spectral theory; eigenvalue problems |2 msc | |
650 | 4 | |a Linear algebraic groups | |
650 | 4 | |a Class field theory | |
650 | 4 | |a Algebraic number theory | |
650 | 0 | 7 | |a Orthogonale Gruppe |0 (DE-588)4177508-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Gruppe |0 (DE-588)4276585-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Orthogonale Gruppe |0 (DE-588)4177508-9 |D s |
689 | 0 | 1 | |a Symplektische Gruppe |0 (DE-588)4276585-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-8218-4990-3 |
830 | 0 | |a American Mathematical Society Colloquium Publications |v volume 61 |w (DE-604)BV047076121 |9 61 | |
856 | 4 | 0 | |u https://doi.org/10.1090/coll/061 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-138-AMQ | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029591288 | ||
966 | e | |u https://doi.org/10.1090/coll/061 |l UBM01 |p ZDB-138-AMQ |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177311488016384 |
---|---|
any_adam_object | |
author | Arthur, James 1944- |
author_GND | (DE-588)133218317 |
author_facet | Arthur, James 1944- |
author_role | aut |
author_sort | Arthur, James 1944- |
author_variant | j a ja |
building | Verbundindex |
bvnumber | BV044184494 |
classification_rvk | SK 180 SK 340 SK 260 |
collection | ZDB-138-AMQ |
ctrlnum | (ZDB-138-AMQ)17689118 (OCoLC)975227527 (DE-599)BVBBV044184494 |
discipline | Mathematik |
doi_str_mv | 10.1090/coll/061 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02647nmm a2200553 cb4500</leader><controlfield tag="001">BV044184494</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220516 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170220s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470409692</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4704-0969-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/coll/061</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-138-AMQ)17689118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)975227527</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044184494</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arthur, James</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133218317</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The endoscopic classification of representations orthogonal and symplectic groups</subfield><subfield code="c">James Arthur</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 590 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">American Mathematical Society Colloquium Publications</subfield><subfield code="v">volume 61</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over global fields and ad ele rings</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over local fields</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory / Algebraic number theory: global fields / Class field theory</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory / Discontinuous groups and automorphic forms / Langlands $L$-functions; one variable Dirichlet series and functional equations</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Global analysis, analysis on manifolds / Calculus on manifolds; nonlinear operators / Spectral theory; eigenvalue problems</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Class field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Gruppe</subfield><subfield code="0">(DE-588)4177508-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Gruppe</subfield><subfield code="0">(DE-588)4276585-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Orthogonale Gruppe</subfield><subfield code="0">(DE-588)4177508-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Gruppe</subfield><subfield code="0">(DE-588)4276585-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-8218-4990-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">American Mathematical Society Colloquium Publications</subfield><subfield code="v">volume 61</subfield><subfield code="w">(DE-604)BV047076121</subfield><subfield code="9">61</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/coll/061</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-138-AMQ</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029591288</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/coll/061</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-138-AMQ</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044184494 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:46:04Z |
institution | BVB |
isbn | 9781470409692 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029591288 |
oclc_num | 975227527 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-11 |
physical | 1 Online-Ressource (xviii, 590 Seiten) |
psigel | ZDB-138-AMQ |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | American Mathematical Society |
record_format | marc |
series | American Mathematical Society Colloquium Publications |
series2 | American Mathematical Society Colloquium Publications |
spelling | Arthur, James 1944- Verfasser (DE-588)133218317 aut The endoscopic classification of representations orthogonal and symplectic groups James Arthur Providence, Rhode Island American Mathematical Society [2013] © 2013 1 Online-Ressource (xviii, 590 Seiten) txt rdacontent c rdamedia cr rdacarrier American Mathematical Society Colloquium Publications volume 61 Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over global fields and ad ele rings msc Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over local fields msc Number theory / Algebraic number theory: global fields / Class field theory msc Number theory / Discontinuous groups and automorphic forms / Langlands $L$-functions; one variable Dirichlet series and functional equations msc Global analysis, analysis on manifolds / Calculus on manifolds; nonlinear operators / Spectral theory; eigenvalue problems msc Linear algebraic groups Class field theory Algebraic number theory Orthogonale Gruppe (DE-588)4177508-9 gnd rswk-swf Symplektische Gruppe (DE-588)4276585-7 gnd rswk-swf Orthogonale Gruppe (DE-588)4177508-9 s Symplektische Gruppe (DE-588)4276585-7 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-8218-4990-3 American Mathematical Society Colloquium Publications volume 61 (DE-604)BV047076121 61 https://doi.org/10.1090/coll/061 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Arthur, James 1944- The endoscopic classification of representations orthogonal and symplectic groups American Mathematical Society Colloquium Publications Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over global fields and ad ele rings msc Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over local fields msc Number theory / Algebraic number theory: global fields / Class field theory msc Number theory / Discontinuous groups and automorphic forms / Langlands $L$-functions; one variable Dirichlet series and functional equations msc Global analysis, analysis on manifolds / Calculus on manifolds; nonlinear operators / Spectral theory; eigenvalue problems msc Linear algebraic groups Class field theory Algebraic number theory Orthogonale Gruppe (DE-588)4177508-9 gnd Symplektische Gruppe (DE-588)4276585-7 gnd |
subject_GND | (DE-588)4177508-9 (DE-588)4276585-7 |
title | The endoscopic classification of representations orthogonal and symplectic groups |
title_auth | The endoscopic classification of representations orthogonal and symplectic groups |
title_exact_search | The endoscopic classification of representations orthogonal and symplectic groups |
title_full | The endoscopic classification of representations orthogonal and symplectic groups James Arthur |
title_fullStr | The endoscopic classification of representations orthogonal and symplectic groups James Arthur |
title_full_unstemmed | The endoscopic classification of representations orthogonal and symplectic groups James Arthur |
title_short | The endoscopic classification of representations orthogonal and symplectic groups |
title_sort | the endoscopic classification of representations orthogonal and symplectic groups |
topic | Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over global fields and ad ele rings msc Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over local fields msc Number theory / Algebraic number theory: global fields / Class field theory msc Number theory / Discontinuous groups and automorphic forms / Langlands $L$-functions; one variable Dirichlet series and functional equations msc Global analysis, analysis on manifolds / Calculus on manifolds; nonlinear operators / Spectral theory; eigenvalue problems msc Linear algebraic groups Class field theory Algebraic number theory Orthogonale Gruppe (DE-588)4177508-9 gnd Symplektische Gruppe (DE-588)4276585-7 gnd |
topic_facet | Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over global fields and ad ele rings Topological groups, Lie groups / Lie groups / Representations of Lie and linear algebraic groups over local fields Number theory / Algebraic number theory: global fields / Class field theory Number theory / Discontinuous groups and automorphic forms / Langlands $L$-functions; one variable Dirichlet series and functional equations Global analysis, analysis on manifolds / Calculus on manifolds; nonlinear operators / Spectral theory; eigenvalue problems Linear algebraic groups Class field theory Algebraic number theory Orthogonale Gruppe Symplektische Gruppe |
url | https://doi.org/10.1090/coll/061 |
volume_link | (DE-604)BV047076121 |
work_keys_str_mv | AT arthurjames theendoscopicclassificationofrepresentationsorthogonalandsymplecticgroups |