Bifurcations in piecewise-smooth continuous systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
2010
|
Schriftenreihe: | World Scientific series on nonlinear science
v. 70 |
Schlagworte: | |
Beschreibung: | Originally presented as: Thesis (Ph.D.)--University of Colorado at Boulder, 2008 Includes bibliographical references (p. 215-235) and index Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. Neimark-Sacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems |
Beschreibung: | xv, 238 p. |
ISBN: | 9789814293846 9814293849 9789814293853 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044156387 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170217s2010 |||| o||u| ||||||eng d | ||
020 | |a 9789814293846 |9 978-981-4293-84-6 | ||
020 | |a 9814293849 |9 981-4293-84-9 | ||
020 | |a 9789814293853 |c Online |9 978-981-4293-85-3 | ||
035 | |a (ZDB-30-PAD)EBC731331 | ||
035 | |a (ZDB-89-EBL)EBL731331 | ||
035 | |a (OCoLC)670429733 | ||
035 | |a (DE-599)BVBBV044156387 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 515.35 |2 22 | |
100 | 1 | |a Simpson, David John Warwick |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bifurcations in piecewise-smooth continuous systems |c David John Warwick Simpson |
264 | 1 | |a New Jersey |b World Scientific |c 2010 | |
300 | |a xv, 238 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Scientific series on nonlinear science |v v. 70 | |
500 | |a Originally presented as: Thesis (Ph.D.)--University of Colorado at Boulder, 2008 | ||
500 | |a Includes bibliographical references (p. 215-235) and index | ||
500 | |a Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. Neimark-Sacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems | ||
650 | 4 | |a Bifurcation theory | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Saccharomyces cerevisiae | |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
912 | |a ZDB-30-PAD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029563232 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177264008495104 |
---|---|
any_adam_object | |
author | Simpson, David John Warwick |
author_facet | Simpson, David John Warwick |
author_role | aut |
author_sort | Simpson, David John Warwick |
author_variant | d j w s djw djws |
building | Verbundindex |
bvnumber | BV044156387 |
collection | ZDB-30-PAD |
ctrlnum | (ZDB-30-PAD)EBC731331 (ZDB-89-EBL)EBL731331 (OCoLC)670429733 (DE-599)BVBBV044156387 |
dewey-full | 515.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.35 |
dewey-search | 515.35 |
dewey-sort | 3515.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02570nmm a2200445zcb4500</leader><controlfield tag="001">BV044156387</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170217s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814293846</subfield><subfield code="9">978-981-4293-84-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814293849</subfield><subfield code="9">981-4293-84-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814293853</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-4293-85-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC731331</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL731331</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)670429733</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044156387</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simpson, David John Warwick</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bifurcations in piecewise-smooth continuous systems</subfield><subfield code="c">David John Warwick Simpson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 238 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Scientific series on nonlinear science</subfield><subfield code="v">v. 70</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally presented as: Thesis (Ph.D.)--University of Colorado at Boulder, 2008</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 215-235) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. Neimark-Sacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saccharomyces cerevisiae</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029563232</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044156387 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:45:18Z |
institution | BVB |
isbn | 9789814293846 9814293849 9789814293853 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029563232 |
oclc_num | 670429733 |
open_access_boolean | |
physical | xv, 238 p. |
psigel | ZDB-30-PAD |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific |
record_format | marc |
series2 | World Scientific series on nonlinear science |
spelling | Simpson, David John Warwick Verfasser aut Bifurcations in piecewise-smooth continuous systems David John Warwick Simpson New Jersey World Scientific 2010 xv, 238 p. txt rdacontent c rdamedia cr rdacarrier World Scientific series on nonlinear science v. 70 Originally presented as: Thesis (Ph.D.)--University of Colorado at Boulder, 2008 Includes bibliographical references (p. 215-235) and index Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. Neimark-Sacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems Bifurcation theory Differential equations Saccharomyces cerevisiae Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Verzweigung Mathematik (DE-588)4078889-1 s 1\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Simpson, David John Warwick Bifurcations in piecewise-smooth continuous systems Bifurcation theory Differential equations Saccharomyces cerevisiae Verzweigung Mathematik (DE-588)4078889-1 gnd |
subject_GND | (DE-588)4078889-1 |
title | Bifurcations in piecewise-smooth continuous systems |
title_auth | Bifurcations in piecewise-smooth continuous systems |
title_exact_search | Bifurcations in piecewise-smooth continuous systems |
title_full | Bifurcations in piecewise-smooth continuous systems David John Warwick Simpson |
title_fullStr | Bifurcations in piecewise-smooth continuous systems David John Warwick Simpson |
title_full_unstemmed | Bifurcations in piecewise-smooth continuous systems David John Warwick Simpson |
title_short | Bifurcations in piecewise-smooth continuous systems |
title_sort | bifurcations in piecewise smooth continuous systems |
topic | Bifurcation theory Differential equations Saccharomyces cerevisiae Verzweigung Mathematik (DE-588)4078889-1 gnd |
topic_facet | Bifurcation theory Differential equations Saccharomyces cerevisiae Verzweigung Mathematik |
work_keys_str_mv | AT simpsondavidjohnwarwick bifurcationsinpiecewisesmoothcontinuoussystems |