2-D quadratic maps and 3-D ODE systems: a rigorous approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2010
|
Schriftenreihe: | World Scientific series on nonlinear science
v. 73 |
Schlagworte: | |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xiii, 342 p. |
ISBN: | 9814307742 9789814307741 9789814307758 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044156283 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170217s2010 |||| o||u| ||||||eng d | ||
020 | |a 9814307742 |9 981-4307-74-2 | ||
020 | |a 9789814307741 |9 978-981-4307-74-1 | ||
020 | |a 9789814307758 |c Online |9 978-981-4307-75-8 | ||
035 | |a (ZDB-30-PAD)EBC731209 | ||
035 | |a (ZDB-89-EBL)EBL731209 | ||
035 | |a (OCoLC)740446113 | ||
035 | |a (DE-599)BVBBV044156283 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 515.352 |2 22 | |
100 | 1 | |a Zeraoulia, Elhadj |e Verfasser |4 aut | |
245 | 1 | 0 | |a 2-D quadratic maps and 3-D ODE systems |b a rigorous approach |c Elhadj Zeraoulia, Julien Clinton Sprott |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2010 | |
300 | |a xiii, 342 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Scientific series on nonlinear science |v v. 73 | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Forms, Quadratic | |
650 | 4 | |a Differential equations, Linear | |
650 | 4 | |a Bifurcation theory | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Proof theory | |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | 1 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sprott, Julien C. |e Sonstige |4 oth | |
912 | |a ZDB-30-PAD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029563128 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177263839674368 |
---|---|
any_adam_object | |
author | Zeraoulia, Elhadj |
author_facet | Zeraoulia, Elhadj |
author_role | aut |
author_sort | Zeraoulia, Elhadj |
author_variant | e z ez |
building | Verbundindex |
bvnumber | BV044156283 |
collection | ZDB-30-PAD |
ctrlnum | (ZDB-30-PAD)EBC731209 (ZDB-89-EBL)EBL731209 (OCoLC)740446113 (DE-599)BVBBV044156283 |
dewey-full | 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.352 |
dewey-search | 515.352 |
dewey-sort | 3515.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01753nmm a2200481zcb4500</leader><controlfield tag="001">BV044156283</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170217s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814307742</subfield><subfield code="9">981-4307-74-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814307741</subfield><subfield code="9">978-981-4307-74-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814307758</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-4307-75-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC731209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL731209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)740446113</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044156283</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeraoulia, Elhadj</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">2-D quadratic maps and 3-D ODE systems</subfield><subfield code="b">a rigorous approach</subfield><subfield code="c">Elhadj Zeraoulia, Julien Clinton Sprott</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 342 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Scientific series on nonlinear science</subfield><subfield code="v">v. 73</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forms, Quadratic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Linear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proof theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sprott, Julien C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029563128</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044156283 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:45:18Z |
institution | BVB |
isbn | 9814307742 9789814307741 9789814307758 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029563128 |
oclc_num | 740446113 |
open_access_boolean | |
physical | xiii, 342 p. |
psigel | ZDB-30-PAD |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | World Scientific series on nonlinear science |
spelling | Zeraoulia, Elhadj Verfasser aut 2-D quadratic maps and 3-D ODE systems a rigorous approach Elhadj Zeraoulia, Julien Clinton Sprott Singapore World Scientific Pub. Co. c2010 xiii, 342 p. txt rdacontent c rdamedia cr rdacarrier World Scientific series on nonlinear science v. 73 Includes bibliographical references and index Forms, Quadratic Differential equations, Linear Bifurcation theory Differentiable dynamical systems Proof theory Chaotisches System (DE-588)4316104-2 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Chaotisches System (DE-588)4316104-2 s Gewöhnliche Differentialgleichung (DE-588)4020929-5 s 1\p DE-604 Sprott, Julien C. Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zeraoulia, Elhadj 2-D quadratic maps and 3-D ODE systems a rigorous approach Forms, Quadratic Differential equations, Linear Bifurcation theory Differentiable dynamical systems Proof theory Chaotisches System (DE-588)4316104-2 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
subject_GND | (DE-588)4316104-2 (DE-588)4020929-5 |
title | 2-D quadratic maps and 3-D ODE systems a rigorous approach |
title_auth | 2-D quadratic maps and 3-D ODE systems a rigorous approach |
title_exact_search | 2-D quadratic maps and 3-D ODE systems a rigorous approach |
title_full | 2-D quadratic maps and 3-D ODE systems a rigorous approach Elhadj Zeraoulia, Julien Clinton Sprott |
title_fullStr | 2-D quadratic maps and 3-D ODE systems a rigorous approach Elhadj Zeraoulia, Julien Clinton Sprott |
title_full_unstemmed | 2-D quadratic maps and 3-D ODE systems a rigorous approach Elhadj Zeraoulia, Julien Clinton Sprott |
title_short | 2-D quadratic maps and 3-D ODE systems |
title_sort | 2 d quadratic maps and 3 d ode systems a rigorous approach |
title_sub | a rigorous approach |
topic | Forms, Quadratic Differential equations, Linear Bifurcation theory Differentiable dynamical systems Proof theory Chaotisches System (DE-588)4316104-2 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
topic_facet | Forms, Quadratic Differential equations, Linear Bifurcation theory Differentiable dynamical systems Proof theory Chaotisches System Gewöhnliche Differentialgleichung |
work_keys_str_mv | AT zeraouliaelhadj 2dquadraticmapsand3dodesystemsarigorousapproach AT sprottjulienc 2dquadraticmapsand3dodesystemsarigorousapproach |