Optimal design of experiments: a case study approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, N.J.
Wiley
2011
|
Schlagworte: | |
Beschreibung: | Includes bibliographical references and index "This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities?While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain. The structure of the book is organized around the following chapters: 1) Introduction explaining the concept of tailored DOE. 2) Basics of optimal design. 3) Nine case studies dealing with the above questions using the flow: description → design → analysis → optimization or engineering interpretation. 4) Summary. 5) Technical appendices for the mathematically curious"-- "This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples"-- |
Beschreibung: | xiv, 287 p. |
ISBN: | 9781119974017 9781119976165 9781119976172 9780470744611 9781119974000 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044154604 | ||
003 | DE-604 | ||
005 | 20180717 | ||
007 | cr|uuu---uuuuu | ||
008 | 170217s2011 |||| o||u| ||||||eng d | ||
020 | |a 9781119974017 |c Online |9 978-1-119-97401-7 | ||
020 | |a 9781119976165 |c ePub |9 978-1-119-97616-5 | ||
020 | |a 9781119976172 |c Mobi |9 978-1-119-97617-2 | ||
020 | |a 9780470744611 |9 978-0-470-74461-1 | ||
020 | |a 9781119974000 |c Online |9 978-1-119-97400-0 | ||
035 | |a (ZDB-30-PAD)EBC697607 | ||
035 | |a (ZDB-89-EBL)EBL697607 | ||
035 | |a (OCoLC)747411905 | ||
035 | |a (DE-599)BVBBV044154604 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 670.285 |2 22 | |
100 | 1 | |a Goos, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimal design of experiments |b a case study approach |c Peter Goos, Bradley Jones |
264 | 1 | |a Hoboken, N.J. |b Wiley |c 2011 | |
300 | |a xiv, 287 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a "This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities?While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain. The structure of the book is organized around the following chapters: 1) Introduction explaining the concept of tailored DOE. 2) Basics of optimal design. 3) Nine case studies dealing with the above questions using the flow: description → design → analysis → optimization or engineering interpretation. 4) Summary. 5) Technical appendices for the mathematically curious"-- | ||
500 | |a "This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples"-- | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Industrial engineering |x Experiments |x Computer-aided design | |
650 | 4 | |a Experimental design |x Data processing | |
650 | 4 | |a Industrial engineering |v Case studies | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimale Versuchsplanung |0 (DE-588)4043660-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineares Modell |0 (DE-588)4134827-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4522595-3 |a Fallstudiensammlung |2 gnd-content | |
689 | 0 | 0 | |a Optimale Versuchsplanung |0 (DE-588)4043660-3 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Optimale Versuchsplanung |0 (DE-588)4043660-3 |D s |
689 | 1 | 1 | |a Lineares Modell |0 (DE-588)4134827-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Jones, Bradley |e Sonstige |4 oth | |
912 | |a ZDB-30-PAD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029561449 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177260598525952 |
---|---|
any_adam_object | |
author | Goos, Peter |
author_facet | Goos, Peter |
author_role | aut |
author_sort | Goos, Peter |
author_variant | p g pg |
building | Verbundindex |
bvnumber | BV044154604 |
collection | ZDB-30-PAD |
ctrlnum | (ZDB-30-PAD)EBC697607 (ZDB-89-EBL)EBL697607 (OCoLC)747411905 (DE-599)BVBBV044154604 |
dewey-full | 670.285 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 670 - Manufacturing |
dewey-raw | 670.285 |
dewey-search | 670.285 |
dewey-sort | 3670.285 |
dewey-tens | 670 - Manufacturing |
discipline | Werkstoffwissenschaften / Fertigungstechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03856nmm a2200577zc 4500</leader><controlfield tag="001">BV044154604</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180717 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170217s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119974017</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-119-97401-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119976165</subfield><subfield code="c">ePub</subfield><subfield code="9">978-1-119-97616-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119976172</subfield><subfield code="c">Mobi</subfield><subfield code="9">978-1-119-97617-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470744611</subfield><subfield code="9">978-0-470-74461-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119974000</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-119-97400-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC697607</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL697607</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)747411905</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044154604</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670.285</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goos, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal design of experiments</subfield><subfield code="b">a case study approach</subfield><subfield code="c">Peter Goos, Bradley Jones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, N.J.</subfield><subfield code="b">Wiley</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 287 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities?While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain. The structure of the book is organized around the following chapters: 1) Introduction explaining the concept of tailored DOE. 2) Basics of optimal design. 3) Nine case studies dealing with the above questions using the flow: description &rarr; design &rarr; analysis &rarr; optimization or engineering interpretation. 4) Summary. 5) Technical appendices for the mathematically curious"--</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples"--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial engineering</subfield><subfield code="x">Experiments</subfield><subfield code="x">Computer-aided design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimental design</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial engineering</subfield><subfield code="v">Case studies</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Versuchsplanung</subfield><subfield code="0">(DE-588)4043660-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4522595-3</subfield><subfield code="a">Fallstudiensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimale Versuchsplanung</subfield><subfield code="0">(DE-588)4043660-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Optimale Versuchsplanung</subfield><subfield code="0">(DE-588)4043660-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, Bradley</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029561449</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4522595-3 Fallstudiensammlung gnd-content |
genre_facet | Fallstudiensammlung |
id | DE-604.BV044154604 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:45:15Z |
institution | BVB |
isbn | 9781119974017 9781119976165 9781119976172 9780470744611 9781119974000 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029561449 |
oclc_num | 747411905 |
open_access_boolean | |
physical | xiv, 287 p. |
psigel | ZDB-30-PAD |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Wiley |
record_format | marc |
spelling | Goos, Peter Verfasser aut Optimal design of experiments a case study approach Peter Goos, Bradley Jones Hoboken, N.J. Wiley 2011 xiv, 287 p. txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities?While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain. The structure of the book is organized around the following chapters: 1) Introduction explaining the concept of tailored DOE. 2) Basics of optimal design. 3) Nine case studies dealing with the above questions using the flow: description → design → analysis → optimization or engineering interpretation. 4) Summary. 5) Technical appendices for the mathematically curious"-- "This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples"-- Datenverarbeitung Industrial engineering Experiments Computer-aided design Experimental design Data processing Industrial engineering Case studies Statistik (DE-588)4056995-0 gnd rswk-swf Optimale Versuchsplanung (DE-588)4043660-3 gnd rswk-swf Lineares Modell (DE-588)4134827-8 gnd rswk-swf (DE-588)4522595-3 Fallstudiensammlung gnd-content Optimale Versuchsplanung (DE-588)4043660-3 s Statistik (DE-588)4056995-0 s 1\p DE-604 Lineares Modell (DE-588)4134827-8 s 2\p DE-604 Jones, Bradley Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Goos, Peter Optimal design of experiments a case study approach Datenverarbeitung Industrial engineering Experiments Computer-aided design Experimental design Data processing Industrial engineering Case studies Statistik (DE-588)4056995-0 gnd Optimale Versuchsplanung (DE-588)4043660-3 gnd Lineares Modell (DE-588)4134827-8 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4043660-3 (DE-588)4134827-8 (DE-588)4522595-3 |
title | Optimal design of experiments a case study approach |
title_auth | Optimal design of experiments a case study approach |
title_exact_search | Optimal design of experiments a case study approach |
title_full | Optimal design of experiments a case study approach Peter Goos, Bradley Jones |
title_fullStr | Optimal design of experiments a case study approach Peter Goos, Bradley Jones |
title_full_unstemmed | Optimal design of experiments a case study approach Peter Goos, Bradley Jones |
title_short | Optimal design of experiments |
title_sort | optimal design of experiments a case study approach |
title_sub | a case study approach |
topic | Datenverarbeitung Industrial engineering Experiments Computer-aided design Experimental design Data processing Industrial engineering Case studies Statistik (DE-588)4056995-0 gnd Optimale Versuchsplanung (DE-588)4043660-3 gnd Lineares Modell (DE-588)4134827-8 gnd |
topic_facet | Datenverarbeitung Industrial engineering Experiments Computer-aided design Experimental design Data processing Industrial engineering Case studies Statistik Optimale Versuchsplanung Lineares Modell Fallstudiensammlung |
work_keys_str_mv | AT goospeter optimaldesignofexperimentsacasestudyapproach AT jonesbradley optimaldesignofexperimentsacasestudyapproach |