Gradient flows: in metric spaces and in the space of probability measures
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser
2008
|
Ausgabe: | 2nd ed |
Schriftenreihe: | Lectures in mathematics ETH Zürich
|
Schlagworte: | |
Beschreibung: | Previous ed.: 2005 Includes bibliographical references and index |
Beschreibung: | vii, 334 p. |
ISBN: | 9783764387211 9783764387228 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044133406 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170217s2008 |||| o||u| ||||||eng d | ||
020 | |a 9783764387211 |9 978-3-7643-8721-1 | ||
020 | |a 9783764387228 |c eISBN |9 978-3-7643-8722-8 | ||
035 | |a (ZDB-30-PAD)EBC417466 | ||
035 | |a (ZDB-89-EBL)EBL417466 | ||
035 | |a (OCoLC)304564764 | ||
035 | |a (DE-599)BVBBV044133406 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 515.42 |2 22 | |
100 | 1 | |a Ambrosio, Luigi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Gradient flows |b in metric spaces and in the space of probability measures |c Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré |
250 | |a 2nd ed | ||
264 | 1 | |a Basel |b Birkhäuser |c 2008 | |
300 | |a vii, 334 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lectures in mathematics ETH Zürich | |
500 | |a Previous ed.: 2005 | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Measure theory | |
650 | 4 | |a Metric spaces | |
650 | 4 | |a Differential equations, Parabolic | |
650 | 4 | |a Monotone operators | |
650 | 4 | |a Evolution equations, Nonlinear | |
650 | 0 | 7 | |a Fluss |g Mathematik |0 (DE-588)4489499-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metrischer Raum |0 (DE-588)4169745-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gradientenfluss |0 (DE-588)4841287-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maßraum |0 (DE-588)4169057-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Potenzialfeld |0 (DE-588)4126347-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |D s |
689 | 0 | 1 | |a Metrischer Raum |0 (DE-588)4169745-5 |D s |
689 | 0 | 2 | |a Potenzialfeld |0 (DE-588)4126347-9 |D s |
689 | 0 | 3 | |a Fluss |g Mathematik |0 (DE-588)4489499-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gradientenfluss |0 (DE-588)4841287-9 |D s |
689 | 1 | 1 | |a Metrischer Raum |0 (DE-588)4169745-5 |D s |
689 | 1 | 2 | |a Maßraum |0 (DE-588)4169057-6 |D s |
689 | 1 | 3 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Gigli, Nicola |e Sonstige |4 oth | |
700 | 1 | |a Savaré, Giuseppe |e Sonstige |4 oth | |
912 | |a ZDB-30-PAD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029540251 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177223765196800 |
---|---|
any_adam_object | |
author | Ambrosio, Luigi |
author_facet | Ambrosio, Luigi |
author_role | aut |
author_sort | Ambrosio, Luigi |
author_variant | l a la |
building | Verbundindex |
bvnumber | BV044133406 |
collection | ZDB-30-PAD |
ctrlnum | (ZDB-30-PAD)EBC417466 (ZDB-89-EBL)EBL417466 (OCoLC)304564764 (DE-599)BVBBV044133406 |
dewey-full | 515.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.42 |
dewey-search | 515.42 |
dewey-sort | 3515.42 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02463nmm a2200649zc 4500</leader><controlfield tag="001">BV044133406</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170217s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764387211</subfield><subfield code="9">978-3-7643-8721-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764387228</subfield><subfield code="c">eISBN</subfield><subfield code="9">978-3-7643-8722-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC417466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL417466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)304564764</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044133406</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.42</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ambrosio, Luigi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gradient flows</subfield><subfield code="b">in metric spaces and in the space of probability measures</subfield><subfield code="c">Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vii, 334 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in mathematics ETH Zürich</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Previous ed.: 2005</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Parabolic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monotone operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution equations, Nonlinear</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fluss</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4489499-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gradientenfluss</subfield><subfield code="0">(DE-588)4841287-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßraum</subfield><subfield code="0">(DE-588)4169057-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialfeld</subfield><subfield code="0">(DE-588)4126347-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Potenzialfeld</subfield><subfield code="0">(DE-588)4126347-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Fluss</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4489499-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gradientenfluss</subfield><subfield code="0">(DE-588)4841287-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Maßraum</subfield><subfield code="0">(DE-588)4169057-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gigli, Nicola</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savaré, Giuseppe</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029540251</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044133406 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:44:40Z |
institution | BVB |
isbn | 9783764387211 9783764387228 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029540251 |
oclc_num | 304564764 |
open_access_boolean | |
physical | vii, 334 p. |
psigel | ZDB-30-PAD |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Birkhäuser |
record_format | marc |
series2 | Lectures in mathematics ETH Zürich |
spelling | Ambrosio, Luigi Verfasser aut Gradient flows in metric spaces and in the space of probability measures Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré 2nd ed Basel Birkhäuser 2008 vii, 334 p. txt rdacontent c rdamedia cr rdacarrier Lectures in mathematics ETH Zürich Previous ed.: 2005 Includes bibliographical references and index Measure theory Metric spaces Differential equations, Parabolic Monotone operators Evolution equations, Nonlinear Fluss Mathematik (DE-588)4489499-5 gnd rswk-swf Metrischer Raum (DE-588)4169745-5 gnd rswk-swf Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd rswk-swf Gradientenfluss (DE-588)4841287-9 gnd rswk-swf Maßraum (DE-588)4169057-6 gnd rswk-swf Potenzialfeld (DE-588)4126347-9 gnd rswk-swf Wahrscheinlichkeitsmaß (DE-588)4137556-7 s Metrischer Raum (DE-588)4169745-5 s Potenzialfeld (DE-588)4126347-9 s Fluss Mathematik (DE-588)4489499-5 s 1\p DE-604 Gradientenfluss (DE-588)4841287-9 s Maßraum (DE-588)4169057-6 s 2\p DE-604 Gigli, Nicola Sonstige oth Savaré, Giuseppe Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ambrosio, Luigi Gradient flows in metric spaces and in the space of probability measures Measure theory Metric spaces Differential equations, Parabolic Monotone operators Evolution equations, Nonlinear Fluss Mathematik (DE-588)4489499-5 gnd Metrischer Raum (DE-588)4169745-5 gnd Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd Gradientenfluss (DE-588)4841287-9 gnd Maßraum (DE-588)4169057-6 gnd Potenzialfeld (DE-588)4126347-9 gnd |
subject_GND | (DE-588)4489499-5 (DE-588)4169745-5 (DE-588)4137556-7 (DE-588)4841287-9 (DE-588)4169057-6 (DE-588)4126347-9 |
title | Gradient flows in metric spaces and in the space of probability measures |
title_auth | Gradient flows in metric spaces and in the space of probability measures |
title_exact_search | Gradient flows in metric spaces and in the space of probability measures |
title_full | Gradient flows in metric spaces and in the space of probability measures Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré |
title_fullStr | Gradient flows in metric spaces and in the space of probability measures Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré |
title_full_unstemmed | Gradient flows in metric spaces and in the space of probability measures Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré |
title_short | Gradient flows |
title_sort | gradient flows in metric spaces and in the space of probability measures |
title_sub | in metric spaces and in the space of probability measures |
topic | Measure theory Metric spaces Differential equations, Parabolic Monotone operators Evolution equations, Nonlinear Fluss Mathematik (DE-588)4489499-5 gnd Metrischer Raum (DE-588)4169745-5 gnd Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd Gradientenfluss (DE-588)4841287-9 gnd Maßraum (DE-588)4169057-6 gnd Potenzialfeld (DE-588)4126347-9 gnd |
topic_facet | Measure theory Metric spaces Differential equations, Parabolic Monotone operators Evolution equations, Nonlinear Fluss Mathematik Metrischer Raum Wahrscheinlichkeitsmaß Gradientenfluss Maßraum Potenzialfeld |
work_keys_str_mv | AT ambrosioluigi gradientflowsinmetricspacesandinthespaceofprobabilitymeasures AT giglinicola gradientflowsinmetricspacesandinthespaceofprobabilitymeasures AT savaregiuseppe gradientflowsinmetricspacesandinthespaceofprobabilitymeasures |