Multi-agent machine learning: a reinforcement approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, New Jersey
John Wiley & Sons, Inc.
2014
|
Schlagworte: | |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (257 pages) illustrations |
ISBN: | 9781118362082 9781118884478 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044070148 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170217s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781118362082 |c Print |9 978-1-118-36208-2 | ||
020 | |a 9781118884478 |c ebook |9 978-1-118-88447-8 | ||
035 | |a (ZDB-30-PAD)EBC1775207 | ||
035 | |a (ZDB-89-EBL)EBL1775207 | ||
035 | |a (ZDB-38-EBR)ebr10921255 | ||
035 | |a (OCoLC)894732371 | ||
035 | |a (DE-599)BVBBV044070148 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 519.3 |2 23 | |
100 | 1 | |a Schwartz, Howard M. |4 aut | |
245 | 1 | 0 | |a Multi-agent machine learning |b a reinforcement approach |c Howard M. Schwartz |
264 | 1 | |a Hoboken, New Jersey |b John Wiley & Sons, Inc. |c 2014 | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (257 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on print version record | ||
650 | 4 | |a Reinforcement learning | |
650 | 4 | |a Differential games | |
650 | 4 | |a Swarm intelligence | |
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehragentensystem |0 (DE-588)4389058-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bestärkendes Lernen |g Künstliche Intelligenz |0 (DE-588)4825546-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwarmintelligenz |0 (DE-588)4793676-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bestärkendes Lernen |g Künstliche Intelligenz |0 (DE-588)4825546-4 |D s |
689 | 0 | 1 | |a Schwarmintelligenz |0 (DE-588)4793676-9 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mehragentensystem |0 (DE-588)4389058-1 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Schwartz, Howard M |t . Multi-agent machine learning : a reinforcement approach |
912 | |a ZDB-30-PAD |a ZDB-38-ESG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029476993 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804177103375040512 |
---|---|
any_adam_object | |
author | Schwartz, Howard M. |
author_facet | Schwartz, Howard M. |
author_role | aut |
author_sort | Schwartz, Howard M. |
author_variant | h m s hm hms |
building | Verbundindex |
bvnumber | BV044070148 |
collection | ZDB-30-PAD ZDB-38-ESG |
ctrlnum | (ZDB-30-PAD)EBC1775207 (ZDB-89-EBL)EBL1775207 (ZDB-38-EBR)ebr10921255 (OCoLC)894732371 (DE-599)BVBBV044070148 |
dewey-full | 519.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.3 |
dewey-search | 519.3 |
dewey-sort | 3519.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02199nmm a2200553zc 4500</leader><controlfield tag="001">BV044070148</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170217s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118362082</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-118-36208-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118884478</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-118-88447-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC1775207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1775207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10921255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)894732371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044070148</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwartz, Howard M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-agent machine learning</subfield><subfield code="b">a reinforcement approach</subfield><subfield code="c">Howard M. Schwartz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, New Jersey</subfield><subfield code="b">John Wiley & Sons, Inc.</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (257 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential games</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Swarm intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehragentensystem</subfield><subfield code="0">(DE-588)4389058-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bestärkendes Lernen</subfield><subfield code="g">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4825546-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwarmintelligenz</subfield><subfield code="0">(DE-588)4793676-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bestärkendes Lernen</subfield><subfield code="g">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4825546-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schwarmintelligenz</subfield><subfield code="0">(DE-588)4793676-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mehragentensystem</subfield><subfield code="0">(DE-588)4389058-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Schwartz, Howard M</subfield><subfield code="t">. Multi-agent machine learning : a reinforcement approach</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield><subfield code="a">ZDB-38-ESG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029476993</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044070148 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:42:45Z |
institution | BVB |
isbn | 9781118362082 9781118884478 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029476993 |
oclc_num | 894732371 |
open_access_boolean | |
physical | 1 online resource (257 pages) illustrations |
psigel | ZDB-30-PAD ZDB-38-ESG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | John Wiley & Sons, Inc. |
record_format | marc |
spelling | Schwartz, Howard M. aut Multi-agent machine learning a reinforcement approach Howard M. Schwartz Hoboken, New Jersey John Wiley & Sons, Inc. 2014 © 2014 1 online resource (257 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Description based on print version record Reinforcement learning Differential games Swarm intelligence Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Mehragentensystem (DE-588)4389058-1 gnd rswk-swf Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd rswk-swf Schwarmintelligenz (DE-588)4793676-9 gnd rswk-swf Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 s Schwarmintelligenz (DE-588)4793676-9 s Maschinelles Lernen (DE-588)4193754-5 s 1\p DE-604 Mehragentensystem (DE-588)4389058-1 s 2\p DE-604 Erscheint auch als Druck-Ausgabe Schwartz, Howard M . Multi-agent machine learning : a reinforcement approach 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schwartz, Howard M. Multi-agent machine learning a reinforcement approach Reinforcement learning Differential games Swarm intelligence Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd Mehragentensystem (DE-588)4389058-1 gnd Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd Schwarmintelligenz (DE-588)4793676-9 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4389058-1 (DE-588)4825546-4 (DE-588)4793676-9 |
title | Multi-agent machine learning a reinforcement approach |
title_auth | Multi-agent machine learning a reinforcement approach |
title_exact_search | Multi-agent machine learning a reinforcement approach |
title_full | Multi-agent machine learning a reinforcement approach Howard M. Schwartz |
title_fullStr | Multi-agent machine learning a reinforcement approach Howard M. Schwartz |
title_full_unstemmed | Multi-agent machine learning a reinforcement approach Howard M. Schwartz |
title_short | Multi-agent machine learning |
title_sort | multi agent machine learning a reinforcement approach |
title_sub | a reinforcement approach |
topic | Reinforcement learning Differential games Swarm intelligence Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd Mehragentensystem (DE-588)4389058-1 gnd Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd Schwarmintelligenz (DE-588)4793676-9 gnd |
topic_facet | Reinforcement learning Differential games Swarm intelligence Machine learning Maschinelles Lernen Mehragentensystem Bestärkendes Lernen Künstliche Intelligenz Schwarmintelligenz |
work_keys_str_mv | AT schwartzhowardm multiagentmachinelearningareinforcementapproach |