Poiesis and enchantment in topological matter:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, MA
MIT Press
[2013]
|
Schlagworte: | |
Online-Zugang: | DE-255 DE-Y3 |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (384 pages) illustrations, music |
ISBN: | 9780262019514 9780262318914 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044055938 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 170217s2013 |||| o||u| ||||||eng d | ||
020 | |a 9780262019514 |c Print |9 978-0-262-01951-4 | ||
020 | |a 9780262318914 |c ebook |9 978-0-262-31891-4 | ||
035 | |a (ZDB-30-PAD)EBC3339727 | ||
035 | |a (ZDB-89-EBL)EBL3339727 | ||
035 | |a (ZDB-38-EBR)ebr10829846 | ||
035 | |a (OCoLC)869281839 | ||
035 | |a (DE-599)BVBBV044055938 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-255 |a DE-Y3 | ||
082 | 0 | |a 701/.51 |2 23 | |
100 | 1 | |a Sha, Xin Wei |e Verfasser |4 aut | |
245 | 1 | 0 | |a Poiesis and enchantment in topological matter |c Sha Xin Wei |
264 | 1 | |a Cambridge, MA |b MIT Press |c [2013] | |
264 | 4 | |c © 2013 | |
300 | |a 1 online resource (384 pages) |b illustrations, music | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on print version record | ||
600 | 1 | 7 | |a Sha, Xin Wei |0 (DE-588)1049204115 |2 gnd |9 rswk-swf |
650 | 4 | |a Kunst | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Art |x Mathematics | |
650 | 4 | |a New media art | |
650 | 4 | |a Topology | |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Medienkunst |0 (DE-588)4113418-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sha, Xin Wei |0 (DE-588)1049204115 |D p |
689 | 0 | 1 | |a Medienkunst |0 (DE-588)4113418-7 |D s |
689 | 0 | 2 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Sha, Xin Wei |t Poiesis and enchantment in topological matter |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-30-PAD | ||
940 | 1 | |q KUBA2-ZDB-30-PAD-2024 | |
940 | 1 | |q KUBA1-ZDB-30-PAD-2023 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029462783 | |
966 | e | |u https://ebookcentral.proquest.com/lib/zikg/detail.action?docID=3339727 |l DE-255 |p ZDB-30-PAD |q BZI |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/khifiit/detail.action?docID=3339727 |l DE-Y3 |p ZDB-30-PAD |q KHI |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1809222547271581696 |
---|---|
adam_text | |
any_adam_object | |
author | Sha, Xin Wei |
author_facet | Sha, Xin Wei |
author_role | aut |
author_sort | Sha, Xin Wei |
author_variant | x w s xw xws |
building | Verbundindex |
bvnumber | BV044055938 |
collection | ZDB-30-PAD |
ctrlnum | (ZDB-30-PAD)EBC3339727 (ZDB-89-EBL)EBL3339727 (ZDB-38-EBR)ebr10829846 (OCoLC)869281839 (DE-599)BVBBV044055938 |
dewey-full | 701/.51 |
dewey-hundreds | 700 - The arts |
dewey-ones | 701 - Philosophy of fine & decorative arts |
dewey-raw | 701/.51 |
dewey-search | 701/.51 |
dewey-sort | 3701 251 |
dewey-tens | 700 - The arts |
discipline | Kunstgeschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV044055938</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170217s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262019514</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-262-01951-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262318914</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-262-31891-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC3339727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL3339727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10829846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869281839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044055938</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-255</subfield><subfield code="a">DE-Y3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">701/.51</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sha, Xin Wei</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Poiesis and enchantment in topological matter</subfield><subfield code="c">Sha Xin Wei</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, MA</subfield><subfield code="b">MIT Press</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (384 pages)</subfield><subfield code="b">illustrations, music</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Sha, Xin Wei</subfield><subfield code="0">(DE-588)1049204115</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kunst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Art</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">New media art</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Medienkunst</subfield><subfield code="0">(DE-588)4113418-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sha, Xin Wei</subfield><subfield code="0">(DE-588)1049204115</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Medienkunst</subfield><subfield code="0">(DE-588)4113418-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Sha, Xin Wei</subfield><subfield code="t">Poiesis and enchantment in topological matter</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">KUBA2-ZDB-30-PAD-2024</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">KUBA1-ZDB-30-PAD-2023</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029462783</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/zikg/detail.action?docID=3339727</subfield><subfield code="l">DE-255</subfield><subfield code="p">ZDB-30-PAD</subfield><subfield code="q">BZI</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/khifiit/detail.action?docID=3339727</subfield><subfield code="l">DE-Y3</subfield><subfield code="p">ZDB-30-PAD</subfield><subfield code="q">KHI</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044055938 |
illustrated | Illustrated |
indexdate | 2024-09-04T00:17:55Z |
institution | BVB |
isbn | 9780262019514 9780262318914 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029462783 |
oclc_num | 869281839 |
open_access_boolean | |
owner | DE-255 DE-Y3 |
owner_facet | DE-255 DE-Y3 |
physical | 1 online resource (384 pages) illustrations, music |
psigel | ZDB-30-PAD KUBA2-ZDB-30-PAD-2024 KUBA1-ZDB-30-PAD-2023 ZDB-30-PAD BZI ZDB-30-PAD KHI |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | MIT Press |
record_format | marc |
spelling | Sha, Xin Wei Verfasser aut Poiesis and enchantment in topological matter Sha Xin Wei Cambridge, MA MIT Press [2013] © 2013 1 online resource (384 pages) illustrations, music txt rdacontent c rdamedia cr rdacarrier Description based on print version record Sha, Xin Wei (DE-588)1049204115 gnd rswk-swf Kunst Mathematik Art Mathematics New media art Topology Topologie (DE-588)4060425-1 gnd rswk-swf Medienkunst (DE-588)4113418-7 gnd rswk-swf Sha, Xin Wei (DE-588)1049204115 p Medienkunst (DE-588)4113418-7 s Topologie (DE-588)4060425-1 s 1\p DE-604 Erscheint auch als Druck-Ausgabe Sha, Xin Wei Poiesis and enchantment in topological matter 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sha, Xin Wei Poiesis and enchantment in topological matter Sha, Xin Wei (DE-588)1049204115 gnd Kunst Mathematik Art Mathematics New media art Topology Topologie (DE-588)4060425-1 gnd Medienkunst (DE-588)4113418-7 gnd |
subject_GND | (DE-588)1049204115 (DE-588)4060425-1 (DE-588)4113418-7 |
title | Poiesis and enchantment in topological matter |
title_auth | Poiesis and enchantment in topological matter |
title_exact_search | Poiesis and enchantment in topological matter |
title_full | Poiesis and enchantment in topological matter Sha Xin Wei |
title_fullStr | Poiesis and enchantment in topological matter Sha Xin Wei |
title_full_unstemmed | Poiesis and enchantment in topological matter Sha Xin Wei |
title_short | Poiesis and enchantment in topological matter |
title_sort | poiesis and enchantment in topological matter |
topic | Sha, Xin Wei (DE-588)1049204115 gnd Kunst Mathematik Art Mathematics New media art Topology Topologie (DE-588)4060425-1 gnd Medienkunst (DE-588)4113418-7 gnd |
topic_facet | Sha, Xin Wei Kunst Mathematik Art Mathematics New media art Topology Topologie Medienkunst |
work_keys_str_mv | AT shaxinwei poiesisandenchantmentintopologicalmatter |